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Previous work on characterising the distribution of forecast errors in time series models by 
statistics such as the asymptotic mean square error has assumed that observations used in 
estimating parameters are statistically independent of those used to construct the forecasts 
themselves. This assumption is quite unrealistic in practical situations and the present paper is 
intended to tackle the question of how the statistical dependence between the parameter 
estimates and the final period observations used to generate forecasts affects the sampling 
distribution of the forecast errors. We concentrate on the first-order autoregression and, for this 
model, show that the conditional distribution of forecast errors given the final period 
observation is skewed towards the origin and that this skewness is accentuated in the majority 
of cases by the statistical dependence between the parameter estimates and the tinal period 
observation. 

1. Introduction 

As interest has grown in the use of finite parameter time series models for 
forecasting, some attention has also been given to the problem of characteriz- 
ing the distribution of the error of forecasts derived from such models when 
the parameters have been estimated. Investigations to date have concentrated 
on the asymptotic distribution of forecasts and rely on the asymptotic 
distribution of the parameter estimates. Two of the most recent contributions 
are by Schmidt (1974) and Yamamoto (1976). Yamamoto considers a general 
autoregressive model and gives an expression up to order T-‘, where T is 
the sample size, of the mean square error of prediction in this model. 
Schmidt considers a more general multiple equation model with exogenous 
and lagged endogenous variables and obtains the limiting distribution of 
suitably standardised multi-step forecasts from this model. 

*The research reported in this paper was supported by the SSRC under Grant No HR 
3432/l, and was completed while the author was a visitor at the Cowles Foundation for 
Research in Economics at Yale University. I am grateful to the referees for their helpful 
comments. 
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Such an asymptotic theory is undoubtedly of interest. But, in those 
applications where we can expect only a comparatively small sample of time 
series data we should be careful in our interpretation and use of these results. 
In the first place, it is well known [e.g. Hurwicz (1950), Shenton and Johnson 
(1966)] that parameter estimates in simple time series models can be badly 
biased in finite samples. This bias will carry over to the conditional 
distribution of forecasts given the observed values of the endogenous 
variable(s) used to initiate forecasts. Secondly, when we do forecast, con- 
ditional on certain values of the endogenous variables, then it is important to 
realise that the distribution of the parameter estimates will also be con- 
ditional and this will itself affect the distribution of forecast errors. This 
particular difficulty can be avoided by the assumption that the sample data 
used in parameter estimation is independent of the values of the endogenous 
variable which initiate the forecast. Although this assumption is commonly 
made [c.f. Yamamoto (1976)] it is hardly realistic in most practical forecast- 
ing situations. Finally, it is useful to distinguish between the distribution of 
forecast errors that is conditioned by observed values of the endogenous 
variable and the distribution which is not so conditioned. 

In the case of the difference equation 

yr=v-1 +ut, t=..., -1, 0, 1, . ..) 

where ICC/< 1 and the u, are i.i.d. (0, o’), we have the forecast error 

(1) 

ETfl -YT+l = @-a)l’7--u,+, 

= [,f~tYt-l~~lY~-l]YT-uT+l, 
where B is the least squares estimator of ~1. As Malinvaud (1970, p. 554) has 
pointed out, the forecast error has zero mean when the distribution of the 
error u, is symmetric. This result refers to the unconditional forecast error. 
On the other hand, when we consider the forecast error conditional on y,, 
we can approximate the mean value of the error using the known expansion 
for the bias of 2 in powers of T-l [H urwicz (1950), Shenton and Johnson 
(1966)], provided we assume that 2 and y, are independent. We have 

(3) 

In fact, we can now go somewhat further than this. Under the same 
assumption about & and y,, we can obtain an Edgeworth-type expansion of 
the conditional distribution of j,+ 1 by using the following result I have 



given elsewhere [Phillips (1977), referred to below as P] for the expansion of 

the distribution function of fi(&--cc): 

P(JT@-aKx) 

=I((l_:2)‘-‘) +~(l_:2)l/2 ((l_:2)l:2) {1+&J 
+O(T_‘), (4) 

where i(s) denotes the standard normal density and I(x)=p , i(y)d!s. 

We now consider the standardised variate ,/%?jr+ 1 -YT+ 1) where .Vl-+ I 
=E(Y,. + 1 Iy,.) = ryT. We have 

P(JT($,.+ 1 -L’T+x+) 

=P(j’T(i-z)J~dx~y+- I( 
P %J+z)<; 

I( 
P fi(B-a)>; 

When yT > 0, this becomes 

~(l,(lx~2)l~‘) +i(,(I*r’)L;2) 

x pT (1 _12,1,2 l+ y+t;yu2) +O(T_ l)> 
i I 

and when yT ~0, 

z(~~~IT:2)l,z)-i(YT(1~b2~l~2) 

I ). YT>O 

I ) YT<O 

(5) 

(6) 

Taking c1 to be positive we see that the distribution of forecasts is negatively 
skewed when y, > 0, positively skewed when yT ~0. When T is small, the 
correction term of O(T- ‘I’) on the normal approximation can be substantial; 
and the normal approximation is less satisfactory as CI increases in size. 
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These results suggest that we should be careful in using the normal 
distribution to characterise the sampling distribution of forecasts in dynamic 
models. Moreover, the fact that forecasts are systematically skewed towards 
the origin is suggestive in the light of the well known characteristic of 
dynamic simulations of econometric models to underestimate the amplitude 
of cycles.’ 

The question now arises to what extent these results are affected by the 
statistical dependence of y, and &. The present paper is intended to tackle 
this question. We show that the correlation between yT and & leads to an 

additional correction term of 0(T-1’2) in the distribution of fi(jjT+ 1 
-JT+ 1), and this additional term accentuates the skewness towards the 
origin in the majority of cases. We also look at the sampling distribution of 
forecasts for lead time h > 1 and derive a similar Edgeworth-type expansion 
for this distribution. 

2. One-period forecasts 

We will work with the model given by (1) and & will be defined as the 

ratio CT= 1 yryt- JCTI 1 yf- 1, so that 2 and y, are statistically dependent. In 
this section we give an expansion for the conditional distribution of 

fi(jr + 1 -jr+ 1 ), given yr. We will leave the technical aspects of the 
derivation to the appendix; and in a later section we will consider the 
distribution of the forecast error 9 T+l -Y~+~ itself, rather than that of the 

standardised variate fi(j T+ 1 -jr+ 1 ). It is useful to have an expansion for 

the conditional distribution of $&,+ 1 - jT + 1 ) given yT. For, by compar- 
ing this expansion with (5) and (6) we can determine, at least in part, the 
small sample effect of the assumption that there are independent data 
available for the estimation of CL 

From the appendix we have the following expansion of the distribution 

function of fi(oi - a) conditional on y,: 

Theorem 1. In the model (1) and where oi is the least squares estimator 

Et’= 1 Y1Yr- I/CL 1 Yf- 1 o M. cm approximation to the distribution function qf f 

v@(&a) conditional on y, is given by 

P(JrT(&c?) < xlyT ) 

=((1_;2)l>2) +~(1_:2)l,z i((,_~z)l!2) 
I+$ + {l- (;y}] +O(T-'), (7) 

‘See, for instance. the simulation results of Green (1972) and Fromm et al. (1972). 



where 0: = o'/(l - cz”). 

We note immediately that the only difference between (7) and the expansion 

for the unconditional distribution of d?(&--a) [see (4) above] is the term in 
braces on the right-hand side of (7). We can see from (7) that, for the 
conditional distribution, the skewness of the unconditional distribution is 

accentuated when 1~‘~ 16 oy. Since y, is normally distributed, this will be so in 
a clear majority of cases (68%). But when yT is an outlier the skewness of 
the conditional distribution is less marked. 

From (7) we can now deduce an 
distribution of y r+ 1 given yT. We have 

P(~~(3T+1-.i;T+1)~XI~T) 

approximation to the conditional 

+O(T- l). 

when yT>O, and 

(8) 

When we compare (8) and (9) with (5) and (6) we reach the same 
conclusion as in the case of the distribution of &. The effect of statistical 
dependence between & and yT on the distribution of the forecast jT+i 
conditional on a given value of yT is, in the majority of cases, to accentuate 
the skewness towards the origin which is present when ?i is extimated from 
independent data. 

It could be argued that we come closer to the assumption that & can be 
estimated from independent data if we neglect several of the latest obser- 
vations in the computation of &. To consider the effect of this procedure let 
us retain & as before, estimated from the first T+ 1 observations yO, ., )sT, 



and suppose that we forecast using the latest observation yr+r where 1 >O. 

Then ET+r+i =iyr+r and &+i+i -_VTII+i = (G-E)Y,+,. The expansion of the 

distribution function of $?(&-a) conditional on yr+r proceeds in the same 
way as when 1= 0, and we find that 

=I( (1 _:2)l:2) + pi 

~[(&2{l+((l)2} + (l”&2{492~] 

fO(T_ ‘), 

so that there is, indeed, a reduction in magnitude of the additional correction 
term of O(T- li2) as observations are neglected in the estimation of CI. 
However, when T is small, some care needs to be taken in the selection of 1. 

For, if all T+l observations are used to estimate tx, the primary coefficient of 
the correction term is, strictly speaking, (T+l)- ‘/‘; and the reduction in the 
overall importance of the correction term that results from the use of the 
extra I observations may well outweigh the effect of the reduction in the 
magnitude of the additional correction term resulting from neglect of the last 
I observations in the estimation of ~1. 

3. Multi-period forecasts 

When we develop forecasts h time periods ahead we use yT+h =ihy,. If we 
now define jT+h=E(yT+hlyT)=cthyT, we have jT+h-jT+h=(OC*h-~h)yT and 

We can expand the probability on the right side of (10) in powers of T-112 
in much the same way as the previous section. The analysis is more 
complicated because Bh is a function of a function of the more basic statistics 
(namely, the quadratic forms y’C,y and y’C,y). An outline of the derivations 
is given in the appendix. We obtain the following expansion for the 

distribution of ,fi(kh-ah) conditional on yT. 
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+0(-r ‘), 

where w=hahm’(l -CC’)’ 2. 

When h= 1, (11) reduces to (7) above. We note from (11) that, as in the 

special case h= 1, the skewness of the unconditional distribution of fi(Oih 
-a”) is accentuated for the conditional distribution when 1~~15 oY. We also 
see from (11) that the asymptotic distribution 1(x/o) becomes a more 
satisfactory approximation as h increases since the correction term of 
O(T-‘I*) in (11) involves an additional term [over and above those in (7)] 
which reduces the magnitude of the correction for h > 1. 

We can now extract an expansion for the conditional dlstribution of j7.+h 
given y.,., as in (S) and (9) above. If j’,.>O, we have 

P(, T(f I-,, -!.,+,,)Sl!j) 

x 
=I i( x 

yThah-1(l-tx2)1’2 Yrh&l(l_M2)1:2 

and multi-period forecasts will be skewed towards the 
not too large. As with (8) and (9), this skewness will in 
be accentuated by the dependence between & and yT. 

4. Distribution of the forecast error 

origin, provided h is 
the majority of cases 

The abo\c results can be used to obtain an approximation to the 
distribution of the forecast error. We illustrate for the case of the one-period 
forecast; and, as bcforc, the derivations are given in the appendix. 
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Theorem 3. An approximation to the distribution function of the forecast 
error jy+I -yT+ 1 conditional on yT in the rnodel (1) is given by 

= I(:) + i(:)[t((l-~2)1/2)(~)(3- (iy)- &(zy (:)I 
+O(T-‘). (12) 

When & and yT are statistically independent the corresponding approximation 

to the distribution function of $ *+, - yT+ 1 conditional on yT is given by 

=I() +i(3[;((l-~)l/2)(3 -#y:)] 
+O(Tm2). (13) 

It is clear from (12) that, up to O(T- ‘), the conditional distribution of &+ 1 
-yr+ 1 is negatively skewed when yr > 0, positively skewed when yT <O.The 
second term in the square brackets on the right side of (12) does not 
influence this skewness, since it involves an odd power of (x/o). Comparing 
(12) and (13) we see that the skewness in the conditional distribution is 
accentuated when 1~~1 <oJ and & and yT are statistically dependent, as in the 

conditional distribution of fi(jT, 1 -jT+I) considered in section 2. We 
conclude that, in the majority of cases and when yr is not an outlier, the 
effect of the statistical dependence between & and yr is to magnify the 
skewness of the conditional distribution of the forecast error. 

5. Final comments 

As we emphasized in the introduction, a clear distinction must be drawn 
between the conditional and the unconditional distributions of forecasts in 
dynamic models. Our discussion has concentrated on the conditional distri- 
bution and it is this case which is of most interest since, in practice, we do 
forecast with given final period values of the endogenous variables. If these 
are observed without measurement error then this is information we should 
use in forecasting. But, in the evaluation of the success of a forecasting 
procedure, on average we might be interested in looking at the unconditional 
distribution, This is the approach taken in the derivation of characteristics 



such as the asymptotic mean square error by Yamamoto (1976) and Box and 
Jenkins (1970). Moreover, it is implicit in most of the sampling experiment 

analysis of forecasting performance in dynamic models. This explains why, in 
those sampling experiments [e.g. Orcutt and Winokur (1969), Malinvaud 
(1970, p. 554)] the sampling distribution of forecasts has appeared unbiased. 

Note that a crude approximation for the unconditional distribution of the 

forecast error jr + 1 - yr + 1 can be obtained by multiplying (12) by the density 

of yT, i.e., (l/a,)i(y,/o,), and integrating with respect to yT. We find that 

and the approximate variance is given by 02(1 -(2T)-‘))2-~2(1 + T--l) 
which corresponds with the usual formula for the asymptotic mean square 
error of forecast [Box and Jenkins (1970, p. 269)]. The approximation is 

rather crude because although the limiting distribution of ,/‘?(&a) as T 

+ 03 is normal, the limiting distribution of fi(jT+ 1 - yT+ 1 ) = fi((oi - cI jyT 
in the unconditional case is not and has a logarithmic discontinuity at the 

origin. It would seem advisable to use this known large sample behaviour in 
devising a suitable approximation for the small sample distribution. 

The approach that has been used to derive expansions of the sampling 
distribution of forecasts in the simple model (1) can be used for higher-order 
autoregressive models and other time series models. In every case it will be 
necessary to write down the joint characteristic function of (i) the first and 
second sample moments of the data that appear in formula for the parameter 
estimates, and (ii) the final period values of the endogenous variable used to 
initiate forecasts. From this characteristic function the cumulants can be 
extracted and combined with the derivatives of the function representing the 
error in the parameter estimates in much the same way as in the proof of 
Theorem 2 to yield an approximation to the joint density of the parameter 
estimates and the final period values of the endogenous variable. The 
ap,proximation to the conditional distribution of the parameter estimates 
given the final period values needed for forecasting then follows directly and 
this can be used to give the required approximation to the distribution of the 
forecast errors. However, in models more complicated than (I) it is necessary 
to carry out most of the heavy algebraic manipulation by computer. Some 
work on the development of the appropriate software is currently under way. 

Appendix 

Proof of Theorem 1 

We start by considering the joint distribution of & and yT which we write 
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as 

where r.=a+s,i,“? Q(r)=y’(C, -rC,)y, y’=(yO, yr,...,~.r) and the mat- 

rices C’, and C, are defined as 

Now the joint characteristic function of Q and yT is given by2 

B(t,, t,)=~I-2it,D52~-“2 

x exp [+(it,Qh)’ (Q - 2it, RDQ)- l (it&%)), 

where D = Cr - rC,, b’= (O,O, . . ., 0,l) and s;! is the (T+l)x(T+l) matrix 
with (i,_j)th element a2(1 -~?-~al~-jl’ The second characteristic (or cumulant 

generating function) is then 

ml? ~2)=bm1,~2)) 

= -ilogdet(Z-2it,D52)- (t:/2)b’SZ(SZ_2it,S2DSZ)-’ Qb. 

We now introduce the standardised variates 

where 

a=(Q-WJk,, 42 =YTbyr 

k, =E(y’(C, -rC,)y)=tr((C, -rC,)Q), 

k, =Ztr((C, -HZ,)&?)‘, 

‘This result follows readily from the result given by Lukacs and Laha (1964, p. 55) 
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and 

0; = C?/( 1 - c?). 

Then, the second characteristic of q1 and q2 is 

and, noting that log det(l - 2it, k; 1’2DQ) = c,T=‘: log( 1 - 2it, k; “‘Sj) where 

hj is the jth eigenvalue of DQ we have 

2 
t1 t: 

2 2 
+ f Gtl)” km 3c (it,)“h, 

Tkm/2 + (it2J2 1 ____ IIf2 ’ 
In=3 . 2 n=, ki 

where 

/+I 

/~,,,=(m-1)!2”-~ c 6jm=(m-1)!2”-‘tr(DQ)“, 
j= I 

Lllld 

h,=2”-‘b’(RD)“Qb/a;. 

The characteristic function of q1 and q2 is now 

=exp(-s _!i) 
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and, since k, = O(T) for all m (cf. P, p. 465) and h, = O(1) for all n, we have 
the expansion 

Inverting this characteristic function term by term we obtain an expansion 
for the joint density of q1 and q2 as3 

f(41~q2)=GhMq2) 1+ jj+3(41)+ g?$f4h) i 2 . 2 

+OV3 2), (A.1) 

where H,( ) denotes the Hermite polynomial of degree n. 

‘Note that term by term inversion of the characteristic function does not rigorously justify 
(A.l) as an asymptotic series, although it is the most convenient way of obtaining the explicit 
form of successive terms in the series. A similar comment holds for the integration needed to 
derive the corresponding expansion of the distribution function in (A.3) below. Verification of 
the asymptotic nature of these series can be obtained by appealing to an appropriate theorem 
on the validity of the Edgeworth series expansion. At present the most relevant theorem is given 
in Phillips (1977b). A complete verification of the expansions requires, of course, that the 
conditions of the theorem hold in the present case. Most of the conditions are not difficult to 
check out, but one side condition has not yet been validated for models with lagged endogenous 
variables as regressors. Some discussion of the problem is contained in Phillips (1977b, sect. 3). 
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Now the conditional density of q1 given q2 = yT/o, is the quotient 

and 

From (A.l) and the fact that H,(x)i(x) = (- l)“i’“‘(x) we obtain the expansion 
of the conditional density 

f(41(Y,l~,)=~h)- &i”‘(qd+ &i’“(q,) 
2 

k: 

++ (3!)%Z 
--i’6’(41)-~i~(q1)H2 f 

2 0 Y 

Integrating out, we have from (A.2) 

+3! k; 
’ %I’+( _&)H,(!?) +o(T-~J~). (‘4.3) 

To obtain an explicit representation of the expansion we must take account 



of the fact that k,,, is a function of I’= Y + _Y, , ?’ for all dues of III. From P 
(p. 466) we have 

and, for our present purposes, it will be sufficient to consider only terms of 
0(T-“2) explicitly.4 We, therefore, take the first, second and fifth terms of 
(A.3). Individually we have 

and from the calculations in P (p. 468, and appendix) we have 

$k = -$((1 _(glli) +oG-‘), 

and 

k, = 2tr((C, -~C,)52)~ +O(Pi2) 

=g[l+o(T-I/‘),. 

This leaves us with h,. Now 

h, = b’L’DL?b/a; 

= bXI(C, -aC2)L?b+O(T-1’2), 

4Terms of O(T-‘) in the expansion of the distribution of JT(&-a) are obtained explicitly in 
Phillips (1976). 
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and after some algebra we find 

and 

Hence 

so that 

Using the above results and collecting terms in (A.3) we find that 

as given in the theorem. 

Proof of Theorem 2 

We write qT(p)=aih-ah and e,(p)=&--a where p’= (pi,p2), p1 =T-‘{y’C1~ 
--E(y’C,y)} and p2 = T-‘{y’C,y-E(y’C,y)}. Then 

h h 
qT(p)=((&-a)+cr)h= C . e,(pyah-j. 

0 j=l J 
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We note that e,(O) =0 (cf. P, p. 44), so that vT(0)=O and both e,(p) and 
q&) have continuous derivatives up to the third order. We write derivatives 
of qr(p) and e,(p) evaluated at the origin as, for instance, ej=&,(0)/dpj and, 
using the tensor summation convention of a repeated subscript, we have 
from the Taylor development of yr(0) 

since pj = O,( I’- 1’2 ). Introducing the standardised variates Isj = fipj, we 

have 

and we note that the derivatives of VT(q) and e,(q) at the origin are related 
as follows : qj = hah- i ej, and qjk = h(h - 1 )ah- ’ eje, + huh- 1 ejk. The joint distri- 
bution of Gh and yr is given by 

and we now introduce the standardised statistics q1 =,,6q,(p)/o and q2 

=y,/o, where w, which will be defined precisely later [by eq. (A.7)], tends as 

T+co to the variance of the limiting distribution of p?,(p). The joint 
characteristic function of q1 and q2 is 

W,s)= E(exp(itql +&I~)) = Sexp(ir~rl,(p)/o+isp2)dF(p,y,) 

= J exp(isy,/a, + itq,p,/w) 

it 
~~M%P~+O~(T-~) 
2wfi 

where F(p, yr) denotes the joint distribution function of (p, )I~). 

Now the joint characteristic function of (p, yr) is given by 

p(v, w) =E(exp(iq, + w’p)) 

(A.4) 

x exp 
i 

- %tr(CiSZ)- %tr(C&) , 
fi JT i 



where F(w)= w,C, + w2C2. The second characteristic is 

= -4logdet I- >F(w)Q 
fi > 

- ; b’Q 
( 

.Q- %X(w)SZ 

fi > 

-1 

L?b 

(A.5) 

We will need to expand x(u, w) in a Taylor series about the origin up to the 
third order so we introduce the following subscript notation for the 
derivatives of x(u, w): the subscript u denotes differentiation with respect to u 
and the subscripts j, k and 1 indicate differentiation with respect to the 
components of w; and all derivatives are evaluated at the origin. Thus, we 
will have 

xv” = a2~(0, wW 

xujk = a3x(o, O)/auawjdw,, 

and 

xjk, = asx(o, O)/awjaw,i3w,. 

We note from the form of (A.5) that all first derivatives are zero and in 
addition x”j=O, xvjk =0 and xVyV = 0 for all j and k. Since derivatives of higher 
order than the third evaluated at the origin are of O(T- ‘) we have the 
expansion 

X(‘, w)=3XD”U2 +tXjkWjW, 

+k (3X”vj02Wj+ XjklWjW,W,) +O(T-' ), 

so that 

/4u. W) = exp(+ Xuvu2 + + Xjkwjw,) 

x { 1 +i (3X""jU2Wj+XjklWjWkWr)} +O(T-‘). W6) 



From (A.4) we now have the representation 

(A.7) 

where 1” = (rll, q2), the vector of first derivatives of q( ) at the origin. 
We now define 

o 
2 

= -Xjkqjqk. (‘4.8) 

Then, using subscripts a and b to denote derivatives at the origin with 
respect to w, and wb, we find from (A.6) and (A.7) after some manipulation 

- e (i3~,vjrj) +O(T-‘). 
Y 1 

Inverting, we find an expansion of the joint density of (q1,q2) given by 

(A.91 

lo obtain an explicit representation of (A.8) in terms of the parameters we 
need to evaluate the coefficients of the Hermite polynomials in the square 
brackets. Details of the derivations can be obtained from the author on 
request. We find that 
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&=&p-2(1 -$), 

i3XjklVjqkqr = __ h ~1 -61 3 3h-2(1 _a2)+o(~-3/2) 

8 

i3xvvjqj = ~ haha;, 
; 

and 

xabqab= -h(h- l)ahe2(1 -a2)+4hah+O(T-‘), 

(Xaj~j)(Xbk~k)rob=h3(h-1)~3h-4(l -&‘J2 

-4h3Ct3h-2(1-a2)+O(T-‘). 

Using these coefficients in (A.9) we obtain 

From this joint density of (ql,q2) we can derive an expansion for the 

distribution function of T(oih-cxh) given the value yT. We have 

and, upon integration, this reduces to 

(3 +($~(l_~2),/2 
x [{I+ @y}+)($)($+ {l- (:y}]+O(T-‘), 

as given in the theorem. 
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Proof of Theorem 3 

The characteristic function of jr+ i - yT+ , conditional on yT is 

ityTT-‘(1 -~~)i/~ ($($:)}lyr]. 

But, from the proof of Theorem 1 we have the following expansion 

characteristic function of fi(4 - a)/(1 - ~~~~~~ conditional on y,: 

E[exp(it&B--x)/(1 -c~~)“~)ly~] 

=exp( -$t”) 

(A.10) 

of the 

x l--&l_~2)l,2 
[ 

2it+(ir)3+(it)(l- ($y)}] +O(T-‘). 

(A.ll) 

Neglecting the remainder of O(T- ‘) in this expansion, we then obtain from 
(A.lO) and (A.ll) an approximation to 
- yr+ 1 conditional on yr: 

the characteristic function of yT+l 

exp( - G {g’+ (1 -a’)y$/T}) 

(;)‘)@)I 

l-~T(1-a2)y2,+&(1-az)2y~ 1 
x 1- ;2ay,(it)- &a(1 -or2)y;(it)3 - $yr (l- ($J(it)]. 

Inverting this expression term by term and neglecting those terms of O(Te2) 
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and smaller we find the following approximation to the density of ($T+ 1 
- yT+ l)/a conditional on yT: 

1 2UY* 
i(x)+ i’(x), T 

( > 

1 (l-cP)L’$ 
+ ic2)(x)- 

+2(x);? (I- [$fy;TC)(T::;. 

Integrating this expression, we have the required expansion 

J%,+ 1 -Yr+1 S1YT) 

=$) +i(g[~((l_~)l,z)(~:)- #ya) 
+-:((1_~2)l!2)(~)(1-(;y)]+w). 
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