CHAPTER 15

The Treatment of Flow Data in the
Estimation of Continuous Time Systems

P. C. B. Phillips*

1 Introducticn

In most of the work that has recently been done in the field of estimating
continuous time econometric models it has been assumed that point observations of
the variables are available." Although this is true of certain variables like wages,
prices, interest rates and stocks (which we term instantaneous variables®), a large
number of economic variables are observed as time integrals. For instance, in the
case of aggregate consumption we use C(#) to denote the rate of consumption
expenditure at a particular point in time. If this rate were sustained for a whole unit
time period then C{7) also represents the flow of aggregate consumption over that
period. More usually, the rate will vary over the time period so that the actual flow
is the integral of C(¢) over time, and this is the quantity we observe.> A number of
early writers emphasized this point (see Koopmans, 1950, and Phillips, 1956) and,
in his study, Phillips indicated how the presence of flow data causes problems in the
estimation of interdependent systems of continuously distributed lags.

Naturally, it is important to develop practical econometric methods that are
designed to make use of data in the form in which it becomes available. Wymer
(1971) has briefly discussed the problem of flow data in the context of estimating a
system of stochastic differential equations from its non-recursive discrete approxi-
mation. If we centre observations approximately, then there is no difficulty in the
construction of the discrete approximation. But estimators derived from the
discrete approximation in this case are biased and the bias does not disappear as the
sampling interval tends to zero.* Our main empbhasis in the present paper, however,
is on estimation via the exact discrete model where the presence of flow data causes
the disturbance to become a first-order moving average. Our results may, therefore,
be regarded as an extension of those in Phillips (1974a).

*University of Birmingham. This essay is a shorter version of a paper (Phillips, 1974b) read at
the Grenoble meeting of the Econometric Society, 1974, and represents a development of
Phillips (1974c, Chapter 7).



2 Linear Models with Filow Data
The structural system which we consider is
Dy(t) = Ay(2) + Bz(1) +{(2) (15.1)

where p(z) is an nx 1 vector of endogenous variables, z(f) is an m x 1 vector of
exogenous variables, and {(¢) is a vector of stochastic disturbances. The elements of
the coefficient matrices 4 and B belong to the real number field and the eigenvalues
of A are assumed to be distinct with negative real parts. D is the differential
operator d/dr, taken in the mean square sense,’ and the elements of {(¢) are
assumed to be pure noise so that the spectral density matrix of §(z) is a constant
matrix, which we denoted by /2, over the whole real line. The latter assumption
is certainly a strong one and useful methods are currently being developed to deal
with systems such as (15.1) under much weaker assumptions about the residuals.®
When the system is closed, however, these methods are not applicable and some
assumption such as ours is necessary for a statistical treatment of the model. The
methods we develop in this paper can still be used when exogenous variables are
present, but an approximation along the lines of that suggested in Phillips (1974a)
is generally needed for estimation purposes.
The discrete time system that corresponds to equation (15.1) we write as

¥(0)= exp (hA)y(r = )
+ | exp (s4) Ba(r - ) ds
0

(15.2)
h
+ J. exp (s4) §(r —s)ds
0
We now define the time integrals
t t
Yo=[ ymda  ad  Zo)= [ xnar (15.3)
t—h t—h
and integrating (15.2) we obtain
Y(r)=exp (hA) Y(r — h)
13
+ | exp (s4) B2 5) a5 (154)
0

r i
+ J‘tuh J-o exp (s4) ¢(r — s)ds dr
If we use the notation Y, = Y(¢h) for integral ¢ we can write equation (15.4) as
Y,=exp(hAd)Y,_; + fonexp (s4) BZ(th — s) + n; (15.5)
where

t n
n:=h Jra fo exp (s4) {(vh — s) ds d7

The disturbance 7, in equation (15.5) clearly has mean zero. To investigate the
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autocovariance properties of n, we first define

h
§(r) = fo exp (s4) §(th — s) ds
and note that

hmin(7r,p)

E[r) £(0)') = exp (ht) | exp (—s4) S exp (~s4')

hmax(r—1,p—1)

ds exp (ohA") (15.6)

Since
t
n=h j &) dr
-1
it follows from equation (15.6) that
t t
El Y=h? exp (Th4
(" n:) ft_lf'_l xp ( )f

ds exp (phA") dr dp

hmin(r,p) ,
exp (—sA) Zexp (—s4")
n

hmax(r—1,p—
which we may expand as
t T ph ,
h? J j exp (thAd) f exp (—sA4) Z exp (—sA) ds exp (phd") dp dr
t—1 Y1-1 Th--h
r P Th , s
+h? j J. exp (thA) J exp (—sA4) Z exp (—s4") ds exp (phA’) d7 dp
=171 ph—h

(15.7)

By carrying out a transformation of variables in the triple integral (15.7) we can
show that (15.7) is equivalent to

1 r hqth
h? f J exp (—qhA) f exp (s4) Z exp (s4") ds exp (—phA4’) dg dp
0 0 hp

1 q hp+h
+h? ‘[0 Jo exp (—qhA) f} exp (s4) Zexp (s4")ds exp (- phA")dq dp

" (15.8)

which is independent of ¢.
We find also that

, : p ph—n
E(iny_)=h? '[ f exp (thd) f exp (—sd) Zexp (- sA ) ds
—1Jr—1 Th--h
exp [(oh — h)4'] dr dp
which, after a transformation of variables, becomes

1 pq qh+h
h? f f exp (»th)f exp (s4) Zexp (sA ) dsexp [(ph +h) A'] dp dg
0 0 phth (15 9
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Under our assumptions, E(n,%;_,) is a zero matrix for r>1 so that the
covariance generating function of n; is

1
V)= T ¢np(n)z77 (15.10)
T=-1

where ¢n(7) =E(MM3e,) and ¢p(1) = ¢y(—7). Since the determinant of y(z)
is not identically zero, we may factorize ¥(z) uniquely as’

¥(2) = G(z) QG (15.11)

where G(z)=/+Fz and the zeros of det[G(z)] are on or outside the unit circle.
The matrix Q is positive definite and equation (15.11) implies the representation of
7, as the moving average

Ny =€, +Fe, (15.12)

where e, is a pure noise process in discrete time with E(e,e;) = Q. Equating
coefficients of like powers of z in equations (15.10) and (15.11) we obtain the
system

tp(0)=Q+FQF
op(1)=QF

which relates the parameters of the moving average in equation (15.12) to the
covariance structure of n,.

In fact, if we assume that the roots of det[(z)] = O are all distinct and that no
roots lie on the unit circle,® then it is a simple matter to construct the matrix F. We
first let z;, i=1,...,n, denote the n roots of det[y¥(z)] = O which lie outside the
unit circle and define the matrix

1
H = diag PO (15.13)
1 n

We then compute the adjugate matrices adj [W(z;)] at each of these roots. By
assumption, adj [Y(z;)] has unit rank and can therefore be written as the product

adj [V(z))] = err (15.14)
where ¢; and r; are non-zero #n x 1 vectors. An equation similar to (15.14) holds for
each i and, if we let R be the matrix formed from the nrows (r; :i=1,...,n), the
coefficient matrix £ in equation (15.11) can then be derived from®

F=-R7HR (15.15)

The implication of the present section is that if we wish to estimate the
continuous system (15.1) with observable data such as (15.3) we can use the mixed
autoregressive moving average model (with exogenous inputs) that is given by

h
Y, =exp (hA) Yoy + jo exp (s4) BZ(th — s)ds + e, + Fe, (15.16)

L
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The treatment of the exogenous variable component in equation (15.16) has been
discussed earlier in Phillips (19742). In principle, (15.16) can be handled by a
number of different methods, but if the system is of a moderate size (ten to fifteen
equations perhaps) and the moving average coefficient matrix £ is taken to be
unknown, then the application of standard maximum likelihood methods'® to
equation (15.16) will involve a very complicated non-linear regression. Moreover,
since F is uniquely determined by 4 and X, the estimates obtained in this way will
be inefficient to the extent that the procedure ignores the restrictions on F implied
by equations (15.8) to (15.11) as well as the a priori restrictions on 4 from the
formulation of the model. In the following section, therefore, we consider a model
which approximates equation (15.16) and involves a moving average disturbance
which we obtain by truncating the expansion of F' in powers of 4. The model can
then be estimated by an iterative procedure in which we alternately estimate the
pair (exp(hd4), Q) and use this pair of estimates to revise our estimate of £

3 An Approximate Moving Average and Its Misspecification Bias

Using the power series expansion of exp(4) in the integrals (15.8) and (15.9) which
define [pn(7) : 7= —1, 0], we find that

3z AT +3A'
2h3 +/z4—3—-—+0(h5) (15.17)

on(0) =

) ., (AT 24 s ;
Bal-1)= = wh (»8'—+a)+0(h) (15.18)

We can now approximate the generating function Y(z) by taking the first terms in
the expansions (15.17) and (15.18). We define
Wzt AT Rz
+ +

6 3 6

VHz) =

=h322_1 +4+z
6

which we can write in the factorized form
2 -

W (z) = (1 +az) o (1+az™") (15.19)
where « = 0.268. The representation (15.19) leads us to consider as an approxi-
mation to (15.12) the simple moving average

e, toe,_ (a=0.268) (15.20)

The model (15.16) can, therefore, be approximated by a model in which the
moving average €, + Fe,_ is replaced by (15.20). Since the operator 1 +az hasan
inverse which can be expanded as a stable series of non-negative powers of z, this
approximate model can be premultiplied by the operator (1 +az)™" so that the
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disturbance in the resulting model is pure noise. The approximate model then
becomes

h
Yot =exp (h4) Y, +f0 exp (s4) BZ*(th — 5) ds + e, (15.21)

where the -asterisk denotes data transformations which are carried out before
estimation! ! (for example Y¥ = i o(—a) Y,_ ).

The approximate moving average (15.20) is the same as that suggested by Wymer
(1972b) for the estimation of a second-order differential equation system from its
discrete approximation. The reason for this equivalence is fairly clear: the discrete
approximation of a second-order system can be derived by integrating the system
over an interval of length A twice, giving a disturbance of the form Seen [oon
¢(s)ds dr; the approximation we have just suggested in the case of flow variables is
equivalent to replacing exp (s4) in the last term on the right-hand side of equation
(15.4) by the identity matrix, giving a disturbance of the same form.

We now turn our attention to the specification error implicit in the use of
(15.20) and establish the following result.

Theorem 15.1
The coefﬁ'cient matrix F and the covariance matrix S0 in the moving average
(15.12) can be expanded in powers of h as
ah
F=al T A —ZA'Z Ny +0r?)

and

K h o s
—6a[2+2(AZ+LA)] +0(h*)

Q
Proof
We define

N7
P(z)= th(z) (15.22)

and, using the expansions (15.17) and (15.18) in the generating function ¥(z) on
the right-hand side of equation (15.22), we find that
z hAZ
P(z)=g(zz +4z+1) +T(322 +8z+1)

'

h
+

54 (z% +8z +3) + O(h*) (15.23)

The remainder after dividing P(z) by the binomial (1 + z/a)! is, from the generalized
Bézout theorem!?, just P(—af). But —a is a root of the quadratic 22 +4z + 1= 0so
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that it is clear from equation (15.23) that this remainder reduces to
h h
aAE(az -—8a+3)+"2'£24’(3ﬂ(2 —8a+1)+0(h?) (15.24)

Thus the remainder when we divide P(z) by the binomial (1 + z/a)! is of O(h).
Since (1 +z/a)! is a regular polynomial matrix, there exists a unique polynomial
Q(z) such that

z
P(2)=Q(Z)(1+&)1+S (15.25)
where the remainder S is given by (15.24). We know also, from the unique
factorization (15.11), that P(z) can be expressed as

(I+Fz)QzI + F')
Ple)=
so that z/ + F is a right divisor of P(z). It follows that A(—F) = 0 and, substituting
in equation (15.25), we obtain

. F
Q(—F)(17;)+s=o (15.26)
In view of (15.24), we can rewrite equation (15.26) as
F - aDO(—FY
(—-% =0(h) (1527)

and, returning to equation (15.23), we see that
z 1
06)== (z +- )+ 0(h)
6 o
Therefore,

Q(—F‘)=-_-:—Z[F“4§I] +0(h) (1528)

Using the canonical form given by (15.15), we write the right-hand side of equation
(15.28) as
a

& |
GZR [H+a1]R +0(h)

Since | a| < 1 it follows from equation (15.13) that A + (1/a)! is non-singular and
of O(1) as h tends to zero. Hence, Q(—F") is of 0(1) and tends to a non-singular
matrix as & tends to zero. We then deduce from equation (15.27) that

F=of +0(h) (15.29)



264

We now calculate the quotient Q(z) in equation (15.25) by long division.!* We
obtain

06 (E+hAE+hZA') . (22+hAE+hEA’)
S PN o N N
S W 24 3 3 3
S hAT hZA')
—_ a2t = 2
@ (6+ PR +0(h*) (15.30)

Since a® —4a+1=0, we have a®> —8a+3=2 —4a and 30? —8a+1 =40 — 2.
Thus, from (15.24) we find that

201

S
12

h(AZ - ZA") + 0(h?) (15.31)

Moreover, from equation (15.30) we have

. T n4Z hZA'), (22 hAZ hZA')
—F)=—a|l—-+—+ Ftal—+—+—
0-F) a(6 8 24 * 3 3
Z hAZ hEA')
Y i el 2
o (6 g + 4 +0(h*)
so that using equation (15.29) we find that
1-2a
O(-F) == 25+ o0m) (15.32)

Thus, it follows from equations (15.27), (15.31), and (15.32) that
F=al+aS' [Q(—F)] !
20 -1
12

=a1+°‘-—(;h) (ZA'S7 - 4) +0(h?)

hAZ —ZA4N + O(hz)] [—3—2'1 +0(h)]

=a[+al
1-2a

=0J+%(A ~ ZA'T) + 0(n?)

which establishes the first part of the theorem.
Since ¢n(—1) = FQ we obtain from (15.18) the equation
o, (AZ zA'

=—+pt{— +— ) + O(%°
6 " \78 24) k")

and since

F =é14 f(A ~ ZA'T Y+ 0(h?)
(44
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we have

1 h nz AT zA’
_Q: [ S % 'E»l 2 4= = 5
[r-qae - mamvonn % e (434 50) wou)

3
_h h Vo s
" [E+2(AZ+LA )+ 0k )]
End of Proof

Corollary

The coefficient matrix F in the moving average (15.12) can alternatively be
expanded as

ah
F=aof +?(A - QA'Q Y+ 0(R?)
and

F=al + [exp(hd) - Qexp(ha )27 ] +00:%)

Proof  Since Q= h3Z/6a +0(h*) we have Q7' = 6aZ ' /h* + o(h™?) and the first
alternative expansion follows. We also have

exp(hA) — Qexp(hA)Q 7t =1+hd — QU +hA)QT +0(R*)
=h(A4 - Q4'Q7) +0(h?)
and this gives us the second alternative expansion.

End of Proof

According to Theorem 15.1 the misspecification bias involved in the use of the
approximate moving average (15.20) is of O(h) and therefore the bias disappears as
h— 0. But, in addition, by giving us the term of O(k) in the expansion of F,
Theorem 15.1 and its Corollary enable us to use an iterative procedure to estimate
the model (15.16). In the next section we will develop this procedure and discuss
the properties of the resulting estimators.

4 Estimation of the Flow Data Model

In this section we will confine our attention to the closed model in which the
coefficient matrix B in (15.1) is null. Our discussion could be cast in terms of the
more general model but would involve us in the complications that have been
sorted out elsewhere (Phillips, 19744, and Sargan, 1976). It seems unnecessary to
repeat that work here and we will only indicate generalizations where appropriate.



266

When there are no exogenous variables the discrete system (15.16) becomes
Y, = exp(hA)Y,_| +€, + Fe;_ (15.33)

It might be thought that a problem of identification arises in this model since the
disturbances are not serially independent. But the coefficient matrices are
identifiable in this model because the matrix polynomials / — exp(h4)z and [ + Fz
have a greatest common left divisor which is the identity matrix and the matrix
exp(hA4) is non-singular. The latter ensures that the null spaces of exp(hA”) and F’
have null intersection and thus we can appeal to the theorem established by Hannan
(1969).

Defining Y' = [Yy,..., Y7, Y_ 1= [Yo,..., Yr_1],E = [e1, ..., €], and
EL | =eo,...,er—] we can write the complete system of equations (15.33) as
Y =exp(hd)Y_ +E' + FE_ (15.34)

For estimation by maximum likelihood methods it is often found convenient in
models such as (15.33) to treat ¢ as a fixed vector.'® We do this and set u = Feq,
writing equation (15.34) now as

Y'=BZ' +V (15.35)
where B = [exp(hA): u]
Yo Yi...Yp_,

Z'=
1 0 ...0
and V'=[e;, e; +Fey,...,er +Fep ;]. Stacking the columns of equation
(15.35) we have
y=WB+Me (15.36)

where!s y =vee(Y'), W=Z®1I, = vec(B), € = vec(E"), and

1 0 0...0 0
F [ 0...0 0
M=1{0 F I 0 0

7 0 0 ... 0 M
-F I 0 ... 0 M,

(R R T My
and premultiplying equation (15.36) by M~! we obtain
My =MWB +e, ¢t=1,...,7) (15.37)

M=
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Thus, assuming that the vectors e, are normally distributed, we see from equation
(15.37) that the joint frequency function of yy, ..., yz conditional on the fixed
vector eg (and hence yy) is given by
L= 1
Qa7 det M | (det $2)T/

7 exp{—H(y ~ WRYM' ™ (1 Q™M ™ (v - WB)}

For a given sample data, L is a function of fand §2. But since the elements of M
depend on F which in turn are determined by 4 and X, it is clear the L depends on
B indirectly through the matrix M. This causes great computational difficulties. One
approach would be to replace £ in the definition of M by the approximation

ah
Fr=al+- 4 —qd'a™)

suggested by Theorem 15.1. Even in this case, however, a preliminary concentration
of L with respect to the unknown elements of 4 causes problems because of the
dependence of F on £, and the computational burden of this approach is still
considerable. In the remainder of this section and in Section 5, therefore, we
will consider two alternatives to maximum likelihood.

The first is based on an iterative procedure and uses an approximate model
derived from equation (15.34) by replacing F with F". We find it convenient to
write equation (15.36) in the form

y=W3+Me+yo (15.38)

where y, M, and € are as in equation (15.36) but now W=Y_; @/,
B = vec[exp(h4)] and Yo' = [eoF,'0, ..., 0]. Thus

My =MWB+e, + M, (15.39)

The difference between equations (15.39) and (15.37) is that Fep is no longer
incorporated in the parameter vector § and for estimation purposes we simply
neglect the term My, in (15.39). As the sample size increases, it is clear that this
term diminishes in importance and it will not affect our asymptotic theory.

The iteration we suggest is now as follows:

(a) Use FO =of as a first approximation to F and construct M(*) in the same
way as M with F replaced by F¢). Writing M= 1= [m{D) ;.. M)
we can then obtain the preliminary estimates of fand £ given by

1T aryr
-3 Zwmomerw] " [1 5 wmougs ]
T =1 T =1
and

T
[910] :TL ZMgl)'[y ~ Wﬁ(l)] - Wﬁ(l)]'MP)
=1

(b) Use 84 and (1) to obtain anew estimate of &
FO=al +% [ - Q(I)C(l)’g(l)—l]
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where (1) is an estimate of exp(hA) constructed from B From F®) we
derive a new estimate M) of M and then estimate 4 by minimizing with
respect to the unknown elements of 4 the quadratic form

T
7 20 WMPOO- MO )

1
=70 WB)' M 1o QM1 p®=1(, )

We denote the resulting estimate of 4 by A

Remark 1

The iteration can be continued by revising the estimates of F and £ after (b)
and then proceeding as in (b) to reestimate A. Since the estimates of A in (b) satisfy
the a priori restrictions there may be some advantage in such a procedure at least in
small samples; but further iterations will not improve on the asymptotic bias of A.

Remark 2

The procedure that leads to §) in (a) is based on a regression with transformed
data. For instance, M{")'y = £f_(—@)! ™Y, and M{D'W involves a similar trans-
formation of the rows of Y_,. Thus, the regression in (a) closely resembles that
involving the approximate model (15.21) discussed eatlier. In fact, if we neglect the
exogenous variable component in (15.21) the methods differ only in terms of end
corrections (¥§ involves Yo while My does not). This difference is clearly
unimportant in an asymptotic theory,'® and, in particular, the estimates of
exp(hd) from the two models will have the same asymptotic bias.

Remark 3

B is an unrestricted estimator in the sense that we do not take account of prior
restrictions on A in the calculation of B“)A It would be possible to do this, of
course, but such a step would increase the computational burden of the procedure.
An asymptotic theory can now be developed for the estimators derived at
each stage in the iteration above. Although the proofs are rather lengthy (see
Phillips, 1974b), we can, in particular, show that the asymptotic bias of B as
T-+oo is of o(k) as & > 0. Moreover, under a condition which ensures the
identifiability of the unknown elements of 4,"7 we can verify that the asymptotic
bias of A as T+ is of o(1) as #— 0. Thus, the asymptotic bias of the structural
estimates obtained from the iteration tends to zero with the sampling interval.'®

5 Estimation by Instrumental Variables

If the sampling interval is not small then the specification error implicit in the use
of the approximations FW1) and F®) may not be inconsiderable. We now consider,
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therefore, an alternative method of estimation in which the moving average
disturbance (15.12) is not approximated. This method requires more computational
effort than the method described in the last section but is still much simpler from
the point of view of the computations involved than the direct application of
maximum likelihood methods to (15.16).

The idea behind the method is to use Y, _, as an instrument for Y, in the
model (15.16). In the case where no exogenous variables occur, this procedure leads
us to the estimating equations £, ¥,Y,_, =B Z8.,Y,_  Y;_,, from which we
obtain, under the given assumptions, a consistent estimator B of exp(hA4). The
residuals (vy:¢=1,...,T) from this regression are then used to construct the
moment matrices ¥ =(1/T) £7_, v, and V; = (1/T) 2T~ pw},+ which are
consistent estimators of ¢,(0) and ¢,(1). Hence, we obtain the following estimate
of the spectral density matrix of n, = e, + Fe,_;:

| P —iA.
Fin ) =3 (Ve ¥y + V™) (15.40)

Assuming that f:m (A) is positive definite, we may determine a unique estimate £*
of F from the factorization

. ! A 5 .
Fia(N) = 27(I+F"‘e”‘)Q*(I + Fxle™™) (15.41)

where the zeros of det(/ + F*z) are outside the unit circle.

Since f5,(N) is a consistent estimator of the spectral density matrix of n,, F*
converges in probability to F. However, F* is likely to be a rather inefficient!®
estimator of F for several reasons. In the first place, if there are prior restrictions on
the matrix 4 (which we can expect to be the usual situation in practice) then the
residual moment matrices ¥y and ¥, may not be very good estimates of ¢,(0) and
¢n(1). Second, ¥,_, may not be a good instrument for ¥,_; if the sampling
interval is large, so that even if there are no restrictions on 4 the moment matrices
Vo and ¥, may be rather inefficient estimators of ¢,(0) and ¢,(1). Finally, it is
well known that the use of (15.40) and (15.41) to estimate the coefficients of a
moving average may be an inefficient procedure.?®

Nevertheless, when no exogenous variables enter the model, F* is a consistent
estimator of F so that, for large samples anyway, we would prefer F* to the
approximations F(!) and F®); even in the case where exogenous variables are
present £* may provide a better estimate of F than these approximations. Once F*
has been calculated, we can proceed directly to stage (b) of the iteration described
in the last section. We then estimate 4 by minimizing

1 B
1;(y - WBYM* T T o Qx M1y — WR)

where M* is constructed from F* in the same way as M is from F, and Q* is given
in the factorization (15.41). Since F* and Q* are consistent estimates of £ and £ it
follows that the resulting estimate of A4 is also consistent.

There may be one practical obstacle to the application of this method. This is
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the possibility that the matrix %,(\) may not be positive semidefinite for all A and
consequently will not admit the factorization (15.41). This situation is most likely
to occur when the sample ‘size is small. In this case, we can expect f%n()\) (and
hence F* if f¥,(\) does factorize) to be a rather poor estimate and, thus, the
iteration discussed in the last section is likely to be most useful when the data series
are short,

6 Forecasting with a Flow Data Model

The presence of the moving average in equation (15.16) complicates somewhat the
problem of forecasting future values of the endogenous variables. To forecast p
periods ahead we would, in an instantaneous variable model, use the predictor2 !

ph
YHip = exp(phd) Y+ fo exp(sA)BZ(Th +ph — 5)ds (15.42)

given the discrete observations (Y;:7=1,...,7) and the continuous time record
(Z(s): Th< s < Th +ph]. In the present case, however, where Y and Z are time
integrals, equation (15.42)is no longer an optimum predictor since

T ph
Yrigp — Yiy, =hJ‘T ) jo exp(s4)¢(th + ph — s)ds dr

is correlated with Y’»‘p,p.

Nevertheless, the theory of prediction for models similar in form to equation
(15.16) is well developed.>* We let M denote the Hilbert space spanned by the
elements [¥,: —eo <t <] and M; the closed linear manifold generated by the
elements of [Y,: ¢ < T]. Then, when no exogenous variables occur in the model,
the best linear predictor of ¥7.,. is given by the orthogonal projection of Y7, on
M. If we denote this projection by YT+p, then YT+p is known?? to satisfy the
equations

Yorip =exp (1A) Ypop_y @>1) (15.43)
Yrog =exp (hd) Yo + F(Yy — Y7) (15.44)

where P is the projection of Y7 on Mr_,. To find the optimum predictor Vot
we need the initial conditions {7, P7_,,...] and through back-substitution in
equation (15.44) we obtain

Yrsy = [exp (hA) + F] Y7 — F [exp (hA) + F] Yo _, (15.45)
+o A (1Y F fexp (RA)+ F) Yr_j ...

For practical purposes we can truncate equation (15.45) after a finite number of
terms?* since, from equation (15.15) F/=(—1YR'H/R and we can expect the
diagonal elements of A/ to be small for moderate j if the sampling interval & is not
too large. Once Y74, has been calculated we can use equation (15.43) interatively
to obtain predictions for lead time ph where p> 1.
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When exogenous variables are present in the model the formulae are similar, We
must assuine, however, that the exogenous variables are stochastically independent
of the disturbances in equation (15.16). We first set

h
o= | | ex(s)BZ(ah — ) ds

and then the optimum predictor of Y7, ; is given by
Yroy ={[exp(hd) + F) Y — F [exp(hd) +F] Y7_,
+F2 [exp(hA) + F] Yr_p — .. 3+ [bre1 ~ For +Flor_y —...]
(15.46)

As before we truncate these expressions at the jth term when th| elements of 77 age
small.

Of course, the optimum predictors (15.45) and (15.46) depend on the
knowledge of the coefficient matrices A, F, and B as well as, in the case of (15.46),
a continuous time record of the exogenous variables. Since this knowledge is not
available in practice, we replace 4, F, and B in equations (15.45) and (15.46) by
their estimated values. The exogenous variable components (¢,: t=7T+1,7,...)
in equation (15.46), which depend on continuous observations, can be replaced by
the approximation given in Phillips (1974a) with the appropriate estimated
coefficient matrices.

We should emphasize that the formulae (15.45) and (15.46) give us only point
forecasts of the endogenous variables. We will, in general, be interested not only in
obtaining point forecasts but also in estimating the forecast error covariance
matrix.>5 However, when the expressions on the right-hand side of equations
(15.45) and (15.46) have been truncated, this problem does not differ very greatly
from the problem in conventional econometric models, and we will not discuss it in
this paper.

7 Further Comments

Our discussion so far has been based on the assumption that all variables in the
model (15.1), including exogenous variables, ate flows and are observed in the form
of time integrals. It has been convenient to make this assumption in order to
develop the theory of Sections 2 to 6. Many practical models, however, can
be expected to involve both flow variables and instantaneous variables. In these
mixed variable models further approximations will usually be needed. One way of
treating such models by the methods of this paper is to work with the system
(15.16) and replace Yy, by (1/2) [yth) + y(th — h)] if the ith endogenous variable
is a stock and the observable quantities are [y,(¢#) : =0, 1,...] rather than the
time integrals {Y;;:#=1,2,...]. The same approximation can be used for the
exogenous variables where necessary. We can expect the effects of such an
approximation to be similar to the effects of replacing a differential equation
system by a discrete approximation. The specification error induced by the latter?®

e
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is of O(h?), so that it might be thought that in mixed variable models the additional
approximation we have suggested is of less importance asymptotically as # ~ 0 than
the effect of the moving average approximations. However, a rigorous analysis is
needed and is best reserved for a later paper.

Our discussion of the flow data problem in this paper has concentrated on the
use of the exact discrete model. This is due to the fact that the problems posed by
the presence of flow variables needed some systematic investigation in this context,
especially since the exact model is currently being used for estimation purposes in
empirical research.®” But since a number of other methods are available for the
estimation of continuous systems, we may well ask how the presence of flow data
affects these other methods. As mentioned earlier in this paper, the treatment of
flow data in the construction of the discrete approximation is discussed elsewhere
(Phillips, 1974b, and Wymer, 1971) and it is known, in particular, that the
asymptotic bias of estimators from the discrete approximation in a flow data model
does not disappear as the sampling interval tends to zero. Thus, on the basis of
asymptotic theory anyway, the procedures developed in this paper appear
preferable.

The other main approach to the estimation of a continuous system is the
interesting spectral method developed recently by Robinson (1975, 1976). In its
most general form the method is designed for a model of continuously distributed
lags, and if the model is transformed by the use of a linear filter such as (15.3) then
the method can be applied to the transformed model and the resulting estimates
will have good properties since the residuals in the transformed model are still
stationary, Moreover, filters such as (15.3) concentrated the spectral mass of the
exogenous series in the Nyquist frequency and, therefore, make the aliasing
condition®® in Robinson (1975 and 1976) more plausible. On the other hand, in
mixed variable models the situation is more complicated and, as with the exact
discrete model, warrants further investigation.

Notes

1. See Phillips (1974a, 1974c¢), Robinson (1973a, 1973b), Sargan (1976), and
Wymer (1972a and 1972b).

. Compare Wymer (1971).

. A useful introductory discussion of stocks and flows is given in Allen (1968).

. A complete discussion of this aspect of the problem is given in Phillips
(1974b).

5. The mathematical problems associated with this interpretation when £(r) is a
pure noise vector are discussed elsewhere (Doob, 1953, Phillips, 1974; Wymer,
1972b).

. See Robinson (1975, 1976).

. See Hannan (1970, p. 66).

This latter assumption is not strictly necessary but we make it now so that the
operator (G(z) has an inverse which can be expanded as a stable realizable
function.

9. For a similar derivation see Robinson (1967).

10. Sec Phillips (1966).

W

o

oo =
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11. The exogenous variable component in (15.21) must also be approximated, in
general, before estimation. We can use the procedure given in Phillips (1974a).

12. See Gantmacher (1959, Chapter IV, Section 3).

13. See Gantmacher (1959, p. 78).

14, Compare Phillips (1966).

13. Our definition of the vec operation is as follows. [f 4 = (a3, ..., &, )nxm then
vec(4) = (a-’l,a'g, L am).

16. Compare Anderson (1971, Section 5.5.2).

17. Compare Phillips (1973).

18. A detailed derivation of the results referred to here is given in Phillips (1974b).

19. By efficient we really mean asymptotically efficient in the usual sense (see, for
instance, Hannan, 1970, Chapter VI, Section 5) so that an inefficient estimator
is one whose asymptotic generalized variance is greater than that of the
efficient estimator.

20. See Hannan (1970, p. 373).

21, Compare Sargan (1976).

22. See Doob (1953, Chapter XII) and Hannan (1970, Chapter 11I).

23, Compare Hannan (1970, p. 136).

24, Compare Box and Jenkins (1970, p. 130).

25. Given the form of the present model we have no guarantee of the existence of
such a matrix, but the recent results of Sargan (1973) for models without
lagged variables are suggestive.

26. See Sargan (1974).

27. See, in particular, Bergstrom and Wymer (1976).

28. This condition requires that the spectral mass of the exogenous series is zero
outside the Nyquist frequency and is discussed fully in Robinson, (1976).
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