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A multiple equation model of the seemingly unrelated regressions type is considered. We 
derive an Edgeworth expansion up to O(T-‘), where T is the sample size, of the finite sampls 
distribution function of the seemingly unrelated regression estimator of the parameters in thie 
model. We examine the two-equation case where our results can be related to exact theory in 
the special case of orthogonal exogenous variables and we take as a particular numerical ex- 
ample Zellner’s original application to micro-investment functions. 

1. Introduction 

Since the publication of Zellner’s original paper (1962) on the estimation of 
seemingly unrelated regression equations, a number of papers have appeared 
that deal with various aspects of the finite sample distribution of the seemingly 
unrelated regression estimator (SURE) in this model. In an important paper 
Zellner (1963) has himself derived the finite sample distribution of the coefficient 
estimator in the special two-equation case where the exogenous variables in 
different equations are orthogonal and the disturbances are normally distributed; 
Zellner also compared the exact second-moment matrix of the estimator in this 
case with that of the single-equation least-squares (SELS) estimator [see also 
Zellner (1972)]. In a more general context, Kakwani (1967) has given conditions 
under which the SURE is unbiased.’ Experimental evidence on the small sample 

*I wish to acknowledge, with thanks, the comments of Yusaku Kataoka on earlier versions 
of this paper, which have saved me from a number of errors (including an important mistake 
in an earlier section on alternative covariance matrix estimates) and improved the presentation 
of the paper. I am grateful also to Professor Arnold Zellner for further suggestions. The research 
was supported by the Social Science Research Council under Grant Number HR 3432/l. 

‘Professor Arnold Zellner has kindly brought my attention to two more recent studies 
reporting exact results by Metha and Swamy (1975) and Kataoka (1974). Metha and Swamy 
derive the exact second moments of the SURE in a two-equation model without assuming 
pairwise orthogonal exogenous variables while Kataoka, who assumes pairwise orthogonal 
exogenous variable, derives the exact second moments of the SURE (using a covariance 
estimator from a restricted regression) in a two-equation model, as well as the exact distribution 
and second moments of the SURE in a system of several equations. 
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behaviour of the SURE is also available and Kmenta and Gilbert (1968) com- 
pare the sampling distribution of the SURE in a number of specific models 
with that of the maximum-likelihood estimator (under normality assumptions) 
and the SELS estimator. The results of Kmenta and Gilbert suggest that the 
asymptotic properties of the SURE [Zellner (1962) and Zellner-Huang (1962)] 
carry over well in small samples, although their experiments do not lend support 
to all of Zellner’s exact results for models with orthogonal exogenous variables. 
In particular, when the exogenous variables are highly correlated Kmenta and 
Gilbert do not observe an efficiency gain in the SURE relative to the SELS 
estimator as the sample size increases.2 

In the present paper we revisit the Zellner model and derive an asymptotic 
series expansion of the Edgeworth type as an approximation to the finite sample 
distribution of the SURE. This approximation helps to provide some further 
evidence of the finite sample behaviour of the SURE. 

2. An approximation in the general case 

We will work with the model 

Yt = Ax,+%, t = 1, . . ., T, (1) 

where y, is an n x 1 vector of endogenous variables, x, is an m x 1 vector of 
non-random exogenous variables, and the ut(t = 1, . . ., T) are mutually in- 
dependent normally distributed random vectors with zero mean and non- 
singular covariance matrix z = [(aij)]. We write (1) as Y’ = AX’+ U’, where 
for example Y’ = [yl, . . ., Y,], and assume that X has full rank and T > m 4-n. 
A is a matrix of unknown coefficients which we assume can be parameterised 
in the form3 

vet(A) = SCI-s, (2) 

where vet(A) is the vector formed by taking the direct sum of the rows of A, 
S is an nm x q matrix whose elements are known constants and whose rank is q, 

and s is a vector of known constants. In (2) c1 is taken as the vector of basic 
parameters and the model then includes the seemingly unrelated regression 
model as a special case as well as Malinvaud’s general linear model (1970, 
pp. 289-296) which allows for the same parameters to occur in more than one 
equation. 

The Aitken estimator of cI which minimises the quadratic form 

ZNote also that the role of the exogenous variables in determining the efficiency gain of the 
Aitken estimator relative to SELS is considered in Zellner-Huang (1962). 

Tf. Sargan (1976, app. C, p. 1). 
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is given by 

& = (Sf(Zc-l@X'X)S}-l {S'(C-'OX') vec(Y')+S'(Z-'OX'X)s). 

(3) 

We let A^ denote the corresponding estimator of A and then 

vet(A) -vet(A) = S(& - a) 

= S{S’(Z-‘@X’X)S}-’ {S’(Z’-‘OX’) vec( Y’) 

+s’(z-‘0x’x>(s-sa)} 

The two-stage estimator of M is now obtained by replacing Z is (3) with an 
estimate of C based on the residuals of a preliminary least-squares regression 
on (I). We will use the estimate4 

c* = $--_ Y'{Z- X(X’X)_‘X’} Y 

= $-_ U’{Z-X(X/X)_‘X’} u, 

and then the corresponding estimates of A and CC, which we denote by A* and 

CI*, respectively, satisfy 

vec(~*-~) = S{S’(z*-‘@x’x)f?}-’ {s’(z*-‘ox’) vec(u’& 

and 

~(*--a = {S’(C*-l@X’X)S}-l {S’(C*-‘OX’) vec(U’)}. (4) 

If M = XIX/T converges as T + co to a finite non-singular matrix &? then 
the limiting distribution of T3(a* -a) is normal with zero mean and covariance 
matrix {s’(~-~@R)s}-‘. Setting Z* = Z+ AC we can write (4) as 

Vf. Zellner (1963). Renormalising c * by l/Trather than l/(T-mm) affects terms of O,(T- *) 
in the expansion of the estimates of a and A in powers of l/T*. This does not then affect the 
first two terms of the Edgeworth expansion [that is, terms up to O(T-‘)I. 
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a*---a = [S’{(Z-tAC)-l@M}S]-’ 
[ 

U’X 
S’{(Z+AC)-l@I) vet T 

1 
, 

= e,h w> (5) 

wherep = vec(U’X/T), and w is a vector of the distinct elements of 

A15 = (T-Hz)-~ U’{I-X(X2-)-‘X’}U-Z. 

Thus, the error in the estimate CI* can be written as a function ofp [whose distri- 
bution is normal with zero mean and covariance matrix (Z@M)/T)] and w 
(whose elements are statistically independent of p). Moreover, the elements of 
the error function eT satisfy the derivative conditions in. Sargan (1975), and Tt-)y 
has bounded moments of all orders as T -+ co so that by Sargan’s (1975) 
approximation theorem the distribution of T*(cY* -a) admits a valid Edgeworth 
expansion. ’ In what follows we will derive this expansion up to O(T-‘) and our 
method of approach, which is similar to that in Phillips (1975) and Sargan 
(1976), involves the expansion of the characteristic function of a linear combina- 
tion of the components of T*(cr* - ct) (A* --A) in powers of l/T”. 

Our first step is to obtain a more convenient representation of (5) by expand- 
ing(C-tAC)-l. Wehave 

Z*-l = (C+AZ)-’ 

= Z-‘-Z-‘(AZ)Z-‘+Z-‘(AZ) Z-‘(AZ)Z-‘+O,(T-+) 

= C-‘+(AZ-‘)+0&T-*), say. 

Then, setting F* = S’(Z*-l@M)S and F = S’(Z-‘OM)S we have 

5The analysis in Sargan (1975) pertains to a marginal distribution so that we work later in 
the paper with the linear combination !~‘(a*-a) of the components of a*-~ Denoting this 
linear combination by qT and taking first derivatives at the origin we have 

so that 

UP = aqT(o)/a, = (z-l @ I) S[S’(z-’ @ M)S]-‘II, 

tJp’& = h’[S’(z-’ @ M)Sl-’ [s’(c-2 0 Z)S] [s’(z-’ 0 M)Sl_‘h, 

which is bounded above zero as T --* CO ; and I,. = aq,(O)/aw = 0, being linear in the elements 
ofp. WithCnon-singular, it is clear that q&. ) has continuous derivatives up to the fourth order 
(at least) in a fixed neighbourhood of the origin. Moreover, for large enough T, these deriva- 
tives are bounded uniformly in T (as T -+ co) since S and E are independent of T and M has a 
finite limit as T + co by assumption. Finally, we note that U’{Z- X(X/X)-’ X’} (I is Wishart 
(E, T--m) so that all cumulants of w exist. But the components of w are standardised statistics 
and the cumulants of Tw are of O(T) as T + co. From this it is clear that the cumulants of 
T*w are bounded as T--t co. This verifies Assumptions l-4 in Sargan (1975, p. 327). 
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F* = S’(~-‘OM)S+S’((dC-‘)OM)S+O,(T-3) 

= {Z+S’((AE-‘)@M)SF-‘}F+O,(7”--$), 

151 

so that 

F*-’ = F-'{Z+S'((A~-')@f)SF-')-l+Op(T-+) 

= F-’ -F-lS’((AE-l)@M)SF-l 

+F-‘S~((A~-‘)@M)SF-1S’((Ar1)&14)SF-1 +O,(T-*). 

Hence 

@*--a = {F-’ -F-‘S’((Az-‘)@M)SF-’ 

+F-‘Sr((A~-‘)@M)SF-‘s’((A~-l)@~)SF-l] 

and introducing the notation 

G = SF-‘,‘? and p = vet 

we obtain 

~+(a*+ = F-‘S’(C-‘OZ)~+P-‘S’(d~-‘)OZ)~ 

- F-‘S’((AT’)@M)G(E-‘@Z)p 

-F-%((AE-‘)@M)G((AE-‘)@Z)p 

+F-‘S’((AC-l)@M)G((AC-‘)OM)G(TIOZ)P 

+0,(7+) 

= Bp+O,(T-+), say. (6) 

we now let a,, = @h’(,p -a), where h is a constant q-vector and we denote 
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byfi(p) andf,(w) the probability density functions of p and W, respectively. 
Then the characteristic function of ah is given by 

where the integration is over the entire (P, w) space. But, from (6), Q!* = @BP 

+O,(T-*)), and 

B = F-lS’(,Y’@Z)+F-‘S’((d~-‘)@Z) 

-F-‘S’((A~-‘)OM)G(~-~@Z) 

-F-‘S’((A~-l)OM)G((A~-l)@Z) 

+F-‘~~((A~-‘)~M)G((~C-‘)OM)G(C-‘OZ) 

is a function only of w so that 

(7) 

1 exp [i(Zz’Z@)s]f,(p)d~ fO(T-*), 

where the integral within the expectation is over the p-space. Now, from the 
normality of p, we have 

Jexp [WZWlfI(ii)dF = exp [ - (?/2)h’B(Z@M)B’h]. (9) 

Using (7), the exponent on the right-hand side of (9) can be expanded as 

h’B(CQM)B’h = h’F-‘S’(Z-‘@M)SF-‘h 

+2h’F-‘S’((dZ-‘)@M)SF-‘h 

-2h’F-1,y’((AZ-1)@M)G(Z-1@M)SF-1h 

-2h’F-‘S’((dC-1)@M)G((dC-1)@M)W1h 

+2h’F-‘,s’((~Iz-‘)@M)G((dZ-‘)OM) 

x G(C-‘@M)SF-‘h 

+h’F-lS’(((dZ-l)C(dZ-l))OM)SF-lh 

-2h’F-1s’((,4Z-1)@M)G((dC-1)OM)~F-1h 

+12’~-‘s’((d~-‘)oM)G(C-lOM) 

x G((dZ-‘)@M)SF-‘h+O,(7+). 
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But 

G(C-‘@M)G = [S(S’(C-‘OM)S}-‘S’](~-‘OM) 

x [s{S’(c-‘oM)s{-‘S’] 

= S{S’(z-‘&I4)S)-‘S’ 

and 

= G, 

F-‘S’(Z-‘@M)SF-’ = F-‘, 

(10) 

so that after cancellation 

Iz’B(C@M)B’h = h’F-‘h+h’F-‘S’(((AC-‘) Z(AZ-‘))@M)SF-‘h 

+O,(T-*). 

Hence, returning to (9) we obtain 

Since 

exp [ -(s2/2)tz’B(C@M)Bh] = exp [ -(?/2)h’F-‘121 

x [l-(?/2){h’F-‘S’ 

x (((AZ-‘)C(AC-‘))&Vf)SF-‘h 

-IiF-‘S’((AZ-‘)@M) 

x G((AC-‘)@M)SF-‘h}]+0,(T-3). 

(11) 

AC-’ = -Z-‘(AZ)Z-‘+Z-‘(AZ)C-‘(AZ)Z-’ 

= - c,+cb, say, 

we can write the right-hand side of (11) in the form 

exp[-(s2/2)h’F-1h][l -(s2/2){h’F-‘S’(C,OM)SF-‘h 

-h’F-‘S’(C,Wf)G(L’,@M)SF-‘h)l+O,(T-4). 

Taking expectations we now obtain the following expansion of the characteristic 
function of ah : 
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$(s) = exp[-(s2/2)h’F-‘A][1 -(s’/2){h’~:-1S’(E(~~)OM)SF-1h 

-h'I:-'S'E{(Z~OM)G(Z,&I4)}SF-%}]+O(T-*). (12) 

To evaluate the expectations in (12) we first write Z’-’ = KK’ for some non- 
singular matrix K, and then 

& = K(K’AZK)(K’AZK)K’ 

= $-+ ‘K(AL)*K’, 
( > 

(13) 

where 

AL = K’U’(l-X(X’X)-‘X’}UK-(T-m)I. 

But, U’{l-- X(X’X)-‘X’} U is Wishart (Z, r-m) so that K’U’{I- X(X’X)-l 

X’} UKis Wishart (I, T-m), and we have [Anderson (1958, p. 161)]: 

where d denotes the Kronecker delta. Thus 

E(AL’) = (T-m)(l +n)I, 

and from (13) we find 

E(&) = p+ z-l. (14) 

We now turn to the expectation in the third term in the square brackets in (12). 
We will consider the expression 

= E{S’(~~,OM)S{S’(C_‘OM)S}_‘S’(~“,OM)S}. 

We partition the columns of S’ into n blocks ofm as 

(15) 

S’ = [S, ; s, i * -* i S,,], 
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and then 

S’(C,,@M)S = i k o;JjMS;, 
j=lk=l 

where c$ is the (j, k)th element of X0. Hence, (15) becomes 

= $ rz E(~~~~~p)(SjMS~)(S’(~;-‘@M)S}-‘(S$fS~)* (16) 

But 

z, = P(Bc)P = K(K’dCK)K’ = &-- K(AL)K’. 

Then using ki to denote the ith row of K, we have 

2 

E{kJ(AL)Klk;(AL)kp) 

2n n 

z 1 E((AL)bc(AL)de)kjbkIfkrdkge 

where, for instance, aj” denotes the (j, r)th element of Z-‘. Thus, (16) is 

which we denote by 

a’ro*~+o’“o’r>(~jMS;)(S’(~-lOM)S)-’(S,MS~), 

(17) 
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From (12), (14), (15) and (17) we now have 

$(s) = exp[ - (s2/2)h’P-‘h] 

x [l-~Ih.F-lS.((~)Z-l~M)~F-‘h 

- ( ) +-_ h’F-lDF-lh 
II 

+O(T-q 

= exp[ -(s2/2)h’r;‘-‘h] 

[I-~((LE)h’F-‘il- ($JhWl}] +O(T-9, 

(18) 
where 

@ = F-‘DF-‘. (19) 

Inverting (18) and using the fact that 

-& 
s 

9 (is>‘exp[-(s2w2/2)] exp[--isx]ds = 
OD 

(!-]+‘Hr(i)i(%) 

where H,(. 
we obtain 

) is the rth Hermite polynomial and i(.) is the standard normal density, 

P(T+h’(a*-cc) 5 X> = I($ +f{(;> WZ -(g-)h?M} 

X(--$)i’(;;“) +O(T-+), (20) 

where I(.) denotes the standard normal distribution function, and 

w2 = h’F-‘h = h’{S’(Z-l@M)S}-lh. 

The limit of w2 as T --t co is then the asymptotic variance of T3h’(cc* -cc) 

The right-hand side of (20) reduces to [up to O(T-‘)I 
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I($ -i($(&)(“+“‘- Y). (21) 

An alternative representation of the distribution function of T*h’ (a* --cc) 
which is correct up to the same order of smallness in l/T* is [cf. Sargan (1975)] 

where 

g= - (&J)l+n)-y}. 
Setting x = 0 in (21) we obtain 0.5+O(T-*) so that the distribution of , , 

T*h’(a*-a) is median-unbiased up to O(T-‘). Moreover, the 
to the probability density of T”h’(a* -cc) corresponding to (21) is 

approximation 

up to the same order in l/T*. Hence, to O(T-‘) the distribution is symmetric. 
These results square with those in Kakwani (1967). We note also that there is 
no term of O(T-“) in (21) which suggests that even for moderate sample sizes 
the distribution of the SURE may be quite close to that of the Aitken estimator. 

3. Some comparisons with SELS 

The approximation given by the first two terms of (21) or by (22) can be used 
to compare the finite sample properties of the SURE, with those of the SELS 
estimator. We denote the latter estimator by ii, and then 

P(T+h’(E-a) s x) = I ; , 
0 

where 

w: = h’(S’(I@M)S}-‘{S’(x%W)S}(S’(I@d4)S)-’h. 

Then the difference between the estimators in terms of concentration in an 
interval symmetric about the true value is 
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P(IT+h’(a*-a)j s x)-P(p%‘(E-a)] 5 x) 

= { z(;u+g)) - z(-;(I+,,)] 

- (I(;) -z(2)} + O(T-+) 

= 2 (I@+d) -z(k)} +or+> 

= 2i(X) 
i 
%U+g)- ; +O(T-q, I 

where X lies between x(1 +g)/w and x/wi. Thus, to the stated order of approxi- 
mation the SURE is the more concentrated about the true value if 

;(l+g)>$ 

That is if 

T_m > ~(1+4-~‘@wIl~l 
2(W,-W) ’ 

(23) 

In view of the complexity of the matrix @ it is difficult to draw useful general 
inferences from the above. One case where @ has a very simple form and where 
it is possible to compare the implications of the above with exact results is 
Zellner’s two-equation case with orthogonal exogenous variables. For, in this 
case, if there are m, exogenous variables in the first equation and m2 in the 
second, we have 

Z 0 
s= 0”’ 0 

[ 1 ) 

0 LIZ 
so that 1 1 xix, 

( T > 

-i 

{S’(z-‘oM)s)-’ ,11 = -1 1 9 

0 

&) 

I. 2 
T 

J 

and 

1 
2 xix, -l 

@= 
p 

(-> T 

0 

0 

2 xix, -l ’ 022 C-J 1 T 
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where Xi is the matrix of T observations on the mi exogenous variables in equa- 
tion i (i = 1,2). We consider the vector of coefficients in the first equation SO 

that setting 

h’ = (h;, O), 

where h, has m, components, we have 

1 
w2 = -h’ 

o11 1 
h 19 

and 

h’@h = -$I,; 
-I h 

1. 
0 

Thus, (22) becomes for this case 

and the condition (23) for the superior concentration of the SURE is [up to 
an error ofO(T-*)] 

Wl T-m>-. 
2(Wl -WI 

But 

so that (24) is 

(all>” 
T-m ’ 2{(a,1)+-(l/a”)-~} * 

Setting p = Cl 2/(011fr22)+ we get 

1 1+(1-p2)’ 
T-nz ’ 2{1-(1-p’)f} = 2$ * 

(24) 

(25) 
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On the other hand, from exact results [Zellner (1963, 1972)] we know that the 
SURE has smaller variance than the SELS estimator when 

T-m > (1 +p*)/p’. (26) 

As is clear from,table 1 below, (25) implies very similar values of T-m for an 
efficiency gain from the SURE relative to SELS. We note also in the table that 
(25) performs a little better (although there is not much between them) than 

T-m > (I-p2)/p2, 

which is the condition derived from the Nagar approximation,6 

(27) 

w2(1-2g) = w2 1+ $m , 
( > 

to the variance of the SURE in this case. 

Table 1 

Values of T-m for an efficiency gain from the SURE. 

P 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

(25) 99.75 24.75 10.85 5.99 3.73 2.50 1.75 

(26) 101.00 26.00 12.11 7.25 5.00 3.78 3.04 

(27) 99 24.00 10.11 5.25 3.00 1.78 1.04 

The two-equation case where X;X, # 0 is rather more complicated. In this 
case we have 

S’(z-‘@M)S = 
0’2 x; X2 1 a22 x;x, ’ 

and writing 

{,.y(p@f)s}-l = 
[ 

gll 
21 

,12] ’ 
22 

we find that the matrix D of (17) can be partitioned as 

D [ 2 21 2, ’ 22 1 
6This approximation can be developed readily from (21). Cf. Sargan-Mikhail(l971). 
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where 

and 

Then 

Dll = 2(0 11 2(z5)cll(z5) +2&$2(~)c21(~) ) 

+2a”*‘2 (T) Cl2 (2%) 

+{(d2)2+d1a22} (qczl (23) 

+2(0’2)2 (3 c,, (3 

+2a’%22 (53) cz2 (33, 

D21 = 423 

Dz2 = {(a12)2+d1022} (qCll (33) 

+2a’V2 (3 CZl (55) 

+2a’V2 (3 Cl2 (3 

+2(c22)2 (5%) cz2 (zis). 

h’@Ph = h;@,,hl, 
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where 

@ll = cll~llcll+c12~21cl1+cl1~12c21+c12~22c21. 

A particular example in which the above formulae can be used is Zellner’s 
(1962) original application to the investment function 

I(t) = a,+a, C(t-l)+cc, F(t-1)+u(t), t = 1, 2, . . ., T, 

for two firms (General Electric and Westinghouse), where 1(t) represent gross 
investment in year t, C(t- 1) the beginning-of-year capital stock and F(t- 1) 
the value of outstanding shares at the beginning of the year. The matrices of 
sample second moments of the data are given in Zellner (1962), and we assume 
that the disturbances on the two equations are normally distributed with co- 
variance matrix 

777.4465 234.5889 
234.5889 1 107.1342 ’ 

which is Zellner’s estimate from the residuals of a preliminary SELS regression. 
With this data and for the appropriate sample size T = 20, we have calculated 

the approximate distribution (21) of the SURE of the coefficients a, and CI~ 
in both equations. In table 2 below we compare this approximation with the 
distributions of the Aitken estimator (1(x/w)) and the SELS estimator (1(x/w,)). 
Since each of these distributions is symmetric about the origin we consider only 
a grid of negative values. 

In each case we note that the approximate distribution of the SURE is quite 
close to the distribution of the Aitken estimator and the SELS estimator has 
greater spread than the SURE. For an interval based on two standard deviations 
(of the Aitken estimator) on either side of the true parameter value we get in 
the case of the coefficient c(~ [and up to O(T-') for the estimate M:]: 

P(jT+(a;-a,)1 2 2~) = 0.0524, 

P(jT+&-a,)/ 2 2~) = 0.0776, 

for the General Electric equation, and 

P(IT*(c+ a2)1 2 2~) = 0.0526, 

P(IT"(a",-a,)[ 2 2~) = 0.0738, 

for the Westinghouse equation. Thus, in this case the difference between the 
tail area probabilities of the two estimators appears to be quite large. We note 
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Table 2 

Comparison of finite sample distributions in micro investment equations. 

X/W 

-3.0 0.0013 0.0015 0.0021 0.0017 0.0040 0.0016 0.0027 0.0017 0.0036 
-2.8 0.0025 0.0029 0.0038 0.0032 0.0067 0.003 1 0.0047 0.0032 0.0061 
-2.6 0.0046 0.0052 0.0066 0.0058 0.0109 0.0055 0.0080 0.0058 0.0100 
-2.4 0.0081 0.0090 0.0110 0.0099 0.0171 0.0095 0.0132 0.0099 0.0160 
-2.2 0.0139 0.0151 0.0180 0.0164 0.0261 0.0158 0.0209 0.0164 0.0246 
-2.0 0.0227 0.0244 0.0283 0.0262 0.0388 0.0254 0.0321 0.0263 0.0369 
-1.8 0.0359 0.0382 0.0431 0.0405 0.0561 0.0395 0.0479 0.0406 0.0539 
-1.6 0.0547 0.0576 0.0636 0.0605 0.0790 0.0592 0.0694 0.0606 0.0764 
-1.4 0.0807 0.0841 0.0910 0.0875 0.1084 O.OSGO 0.0976 0.0876 0.0105 
-1.2 0.1150 0.1187 0.1263 0.1226 0.1448 0.1209 0.1334 0.1227 0.1418 
-1.0 0.1586 0.1625 0.1702 0.1665 0.1885 0.1647 0.1774 0.1666 0.1858 
-0.8 0.2118 0.2155 0.2229 0.2194 0.2401 0.2177 0.2296 0.2194 0.2374 
-0.6 0.2742 0.2774 0.2837 0.2807 0.2982 0.2793 0.2894 0.2808 0.2959 
-0.4 0.3445 0.3469 0.3515 0.3493 0.3620 0.3482 0.3556 0.3494 0.3604 
-0.2 0.4207 0.4219 0.4244 0.4232 0.4299 0.4227 0.4266 0.4233 0.4291 

General Electric Westinghouse 

al aI 

Aitken SURE SELS SURE SELS 

at g2 
- 

SURE SELS SURE SELS 

that most of the difference results from the inefficiency of the SELS estimator. 
For the tail probability of the SURE is close to that of the Aitken estimator 
(0.05 here) and, from (40), we find that the disturbance correlation coefficient 
is p = 0.8128 so that we would expect the Aitken estimator to have a definite 
efficiency gain, at least for some of the coefficients.7 

4. Final comments 

Although the results of section 2 are quite general they are limited by the 
assumptions of non-random exogenous variables and normally distributed 
disturbances. The former assumption is of some importance since the two-stage 
estimator is known to be asymptotically less efficient than the Aitken estimator 
when there are lagged dependent variables amongst the regressors [Maddala 
(1971)]. Since asymptotic series expansions of the Edgeworth type are known to 
be valid under more general assumptions than those made in the present paper’ 
further research along these lines to include such cases seems desirable. 

7The precise form of the efficiency gain depends on the elements of the observation matrices 
XI and Xz. Zcllner and Huang (1962) show that if we wish to consider the generalised variance 
of the estimates of the coefficients in a single equation then we can express this gain in terms 
of the canonical correlation coefficients of XI and Xz as well as p. 

%ee Phillips (1975,1977) and Sargan (1976). 
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