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A local limit theorem for large deviations of o(z)'/2, where n is the sample size,
is developed for multivariate statistics which are more general than standardised
means, but which depend on » in much the same way. In particular, the cu-
mulants of the statistic arc of the same order in #71/* as those of a standardised
mean. The theory is derived under conditions which correspond to thosc in
carlicr work by Richter on limit theorems for standardiscd means and by
Chambers on the validity of Edgeworth expansions for multivariate statistics.

1. INTRODUCTION

In recent years limit theorems for large deviations have attracted much
attention on the theory of probability. A most extensive survey of this rescarch
is contained in Chapters 6-14 and Chapter 20 of Ibragimov and Linnik’s
excellent treatise [5]. Virtually all the results available so far seem to have been
established for standardised sums of independent (and often identically dis-
tributed) random variables. This is rather unfortunate for research workers in
mathematical statistics and associatcd areas such as economctric theory, for a
major potential application of large deviation limit theory lies in approximating
the tails of the finite sample distribution of statistics which are mor¢ general
than standardised means, but which depend on the sample size in much the
same way. In point of fact, this motivation lay behind Daniels’ original work on
saddlepoint approximations [2, 3], which led in turn to the systematic exploitation
of this method in Richter’s seminal papcr [6].

Let us suppose that we are interested in the p x 1 random vector Z, whose
distribution depends on the parameter # (the sample size) and whose mathema-
tical expectation is zero. We require the higher order cumulants of #*2Z, to
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LARGE DEVIATION LIMIT THEOREM St

exist and be of O(n) as # — 0. Then, in addition to representing a standardised
mean, Z, can represent for instance a suitable standardised second moment
matrix from a multivariate distribution. In this respect, the present paper
generalises Richter’s multidimensional local limit theorem in [7].

In [1] Chambers dealt with multivariate statistics such as Z, and developed
asymptotic expansions of the Edgeworth type to the distributions of Z, .
Chambers also demonstrated how these expansions can be transferred to derive
further expansions for the distributions of statistics which arc well-behaved
functions of Z,, . In deducing the validity of these cxpansions Chambers imposed
a condition on the tails of the characteristic function of Z, . This condition is
more restrictive than Cramer’s condition (C) (see, for example, [5, p. 98]) on
the characteristic function of the component variables in a standardised mean.
Nevertheless, it is sufficiently gencral to include a wide class of distributions
and, in particular, Chambers applies it to central and noncentral Wishart distri-
butions.

The aim of the present paper is to show how a limit theory for large deviations
can be developed for statistics like Z, under a Chambers-type condition on the
characteristic function. This theory should then be useful in developing
approximations to the tail probabilitics of such distributions.

We use the term “large deviation” in this paper to refer specifically to the case
of a deviation of o(n!/?). Thus, our theory is to be distinguished from, on the one
hand, the theory of large deviations of O(n'/?) (which are referred to as very large
deviations in [5]) and, on the other hand, the theory of moderate deviations
which deals with deviations of O((log 7)1/2) (see, for instance, [4]).

2. THeEOREM AND CONDITIONS
We impose the following conditions on the statictic Z,:
CoxprrioN 1. The mean vector of Z, is zero and the covariance matrix of
Z, has a positive definite limit as # — co. All higher order cumulants of #'/2Z,

exist and are of O(n) as n — oo.

ConxprrioN 2. There exist positive numbers 4, /,, and L, such that in
the sphere | || << 4 we have

| o[ eraro| <L,
—o v —
where || ] = (2*%)!/? in which &* represents the complex conjugate transpose

of 2 and V/({) is the distribution function of 127, .
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ConpITION 3. The characteristic function ¢(0) of Z,, satisfies
[4(0)] d0 = O(e™")
li6i[>Bn*

for all B > 0 and for some « such that 0 <C « <C § and for some 6, > 0.
Under these conditions we have the result:

THEOREM.  Suppose Conditions 1-3 are satisfied and let p,(x) denote the density
of Z,, . Then for x; > 1 and x; = x,; = o(n'/?) as n — 0 (J = 1,..., p), we have

PC P
@) " P |

Pu(—2) = Wﬁi-t(_ﬁj))? exp %-%'W'Hllx + ¥, (;T:)i [1 +0 ( ‘n1/2 )],

ettt (5 1+ 0 (4L

where H, is the covariance matrix of Z, and ¥,(y) is a power series converging
Sor all sufficiently small values of || y !|.

Remarks. Condition 1 defines the main characteristics of the class of random
vectors with which we are concerned. Note that cumulants of order » > 2 of Z,,
are of O(n=""®71), the same order in 1/#!/2 as for a standardised mean (when
the component variables have enough cumulants).

Condition 2 implies that the characteristic function of #1/2Z, is analytic in the
spherc | || << A. It is clear that in the case where Z, = (X; 4 - + X,)/n!/?
and the X; (j = 1,..., n) are independently distributed random vectors, Condi-
tion 2 above is satisfied when (c.f. [5]) there exist positive numbers A4, /, and L
for which

t<| [ etan| <z
in thesphere|| 2 | << 4, where V;(€) is the distribution function of X; . Moreover,
in this case, /, = [?and L, = L".

Condition 3 is a Chambers-type condition on the tails of the characteristic
function of Z,, .

3. PROOF OF THE THEOREM

Since ¢(0) is absolutely integrable (from Condition 3) the density p,(x) of
Z, exists and 1s given by the inversion formula

£u() = (1/2m)2 [ emt=24(6) d,

RY
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where R? denotes p-dimensional Luclidean space. Dividing R? into the domains
Q={0]|6;]| < en'/? allj}

and R? — Q, where ¢ is any positive quantity, we obtain from Condition 3

Pala) = (1)2)2 [ e=5%(0) db + O(e™"),

since for large enough n

[ eem@a] <[ g0 = o,

RY—02 6li>Bna

Let 7 = 0/n'/2 so that

Pul®) = (”1’2,."2")”f et (ni/27) dr + O(e™), (1)
o
where
Q% = {7 ||| < ¢ allj}
We write
Buttin) = M) = [ o5 av () @)
R

and then the integrand on the right-hand side of (1) has the form
e (i iy 3)

and the paths of integration in the planes of the u; (j = 1,...,, p) are along the
imaginary axes over the domain defined by 2*.

In view of (2) and Condition 2, 3 (n*/24) has an analytic continuation to strips
in the space of complex « for which || Re(#)] < 4. We note that

| M(n*2u)] > I, 4)
for all u in such strips and, therefore, for u which lie in
G=A{u|lu| <4 =A4A2p;7=1,.,p}

It follows from (4) that for u € G we can define K(n'/21) as that branch of
log(M{(n*#2u)) for which K(0) = 0. Moreover, for » € G, K(n'/?4) is an analytic
function of # with the Taylor expansion about the origin given by

K = 3 0030(@/0u) + - + (@ 0,)} KO)

=2
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Using the tensor summation convention of a repeated suffix, we write this
expansion as

({2) Ryusy - (B26) Rjppnntijttsth, + (12]24) Rjpnttsttgityiig

+ =l g+ (01F]6) kgt + (n/24) kit ntigti, + ), (5)
where, for instance
Rjim = [E*K(0)/(0; 8uy Suyy,)).
We also note that

SK (012
RO ity 4+ (0%2) Bttt 4 (6) Rttt + )
:

(r=1,.,p)

and these power series converge uniformly for u € G.
Now we can write (3) as

exp{—n%'u 4+ K(n*’*u)} = exp{—n[y'u — (1/n) K(n*"*u)]},

where y = x/n1/2. Thus, taking ¢ << 4, , we rewrite (1) as

paw) = (2miye [ o [ expl—nlyn — (1n) K(iPa)]} du + O™ (6)

~ie ~i

and the paths of integration in the planes of the u; are along the imaginary axis.
We now deform the paths of integration to become the lines of steepest descent
passing through the saddlepoints u,%,..., u,® which satisfy

1 0K(n\2n)

¥r
" n Oy

nt/? n
= ko + 5" Ryttt + g Frtmn ittt +
(r =1,...,p) 7

We take x; > 1 and see that when x; = o(n!/?) forj = 1,..., p, we have y = o(1)
as n — co. Thus, for large enough #, y will be small and the power series defined
in (7) can be inverted to give power series in the y, (v = 1,..., p) that converge for
large enough n. This follows from the fact that the matrix H, = [(k;)] s
positive definite for large # according to Condition 1. Thus, the positions of the
saddlepoints are given by

w0 = uy) = auy; + @Y1 + GinYiVi¥m + (r=1..,p), (8
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where
a,; = k7,
@pyy = —K[(W1722) k] KPR,
Qpjimn = 287122 kg ] RVRSS[(01/212) Ry ] RORT
— R0((1]6) kg, ] RVE R,
From (8) the #,° (r = 1,.., p) lie on the real axes in the complex planes of
Uy yenny Uy -

In the space of each variate u, in the integral (6) we now consider the contour
L(r} ‘~—=L§T) +L;r) +L§r) +L§r)’
where if #,° > 0 we define
LY — (e, —ie), LY = (—ie, 0,0 — ie);
LY = (0 —ie, 0,0 +ie), LY = (1,0 + ie, ie);
and if #,% << 0 we define
L = (—ie,ie), LY = (i€, u,9 -+ ie);
LY = w0 +ie,u® —ic), LY = (w9 — ie, —ie).

We proceed to deform the paths of integration in (6) sequentially starting with
u, . We assume #,° < 0 and the argument for the case u,° > 0 follows a similar
line.

By Cauchy’s theorem we have

pn(x) = _("1/2/2””.)17 J‘_i; “L(u) + ( * [

I m‘
X exp{—n[y'n — (1/n) K(n*Pu)]} du, -+ du,, -+ O(e™™).

On the horizontal segments of the contour L we obtain, for instance for Ly,

i i
n2{2mi)? exp{—n(y'u) + K(n'?%u)} du, - du
—ic ) z

—te

< (nt/32m)P [“ qu [ [ exp{—ny, Re(u,) + K(n'2u)}! du, -+ du,,, (9)

i VI-a(W)

where Re(u;) denotes the real part of u,, . Since # & G for large enough z we can
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replace K(n!/24) by its Taylor expansion (5). Noting the order of magnitude of
the cumulants of Z,, , we have

K(n'2u) = n($u'Hyu + O u |®)).
We now introduce an orthogonal matrix C), for which
C,/H,C, = diag(Ay ..., \,).
From Condition 1, C,, has a nonsingular limit as n — co. We let
w = C,'u = Re(w) + i Im(w),

say, and then for u, on L{" we have Re(w) = o(1) as n — oo since Re(u,)
satisfies

and #,° from (8) has the same order as the elements of y. Transforming variables
in the integral on the right side of (9) we get

,
Kt C) = (4 3 hon? + Ol i)
r=1

and noting that
¥» Re(u,) = of1)

we have

| exp{—ny, Re(u) + K( )}

P » 1
<|ex[n(s S MRe(w, = Il ) + OG0 + o) |
< exp g—(n‘/4) i A, Im(w,)% (10)

for large enough 7 and small enough ¢ since Im(w,) = O(e). It now follows
from (10) that

(n'/22m)? f; J.“ f o | exp{—ny, Re(u,) + K(n'/?uw)}| du, -+ du,
~ie —ie Pl

— O(n"’lze_bl") — O(e—-bzn)

as n — o0, where b, is some positive constant and 0 << b, < by .
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We obtain a similar expression for the integral over the contour L{¥. Thus

ic nte auOtie
Pal) = (12/2mi)? f e [T exp{nly'u — (1in) K(ndlPu)]} duy -+ du,

—ie  Yeiedy 0 ge
L O(e™™)
where b; = min(b, , b,).
Deforming the path of integration in the planes of u,_y , #,_5,..., %, we find

that in each case the integral over the horizontal segments LY and L{” can be
neglected, leaving us with

u,O+ie uO+ie
pala) = e 2mi [ [ exp{—nly'u — (Un) K]} duy

+ 0™ (11

for some positive constant b.
Along the paths of integration in (11) we have

w, = ud+ 1, r=1,.,p, (12)
where

—e<t, < e (13)
For large enough #, small enough ¢ and u satisfying (12) and (13) we can expand
(1/n) K(n*?u) — y'u
in a Taylor series about 4°. We have

(1fm) K %20) — y'u = (1/n) K(n*?u) — y'u®

+ (Un) Y (Uit (3/2w) + - + it,(0lou,)P K(iruo),
i—2
Now

1 1 , 1., 1 0K (n'/%0) \'
2 J2,0) a0 — & 12,0y _ - (GAIETTRT) N o
nK(n 1) — y'u —nK(n u0) n( E» )u

z (.7—“' 1 )n;‘/z (ulo_gi_l_*_ +up“5i_)] K(()), (14)
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and from (8) and (14) we obt4in after some algebra
(1) K%)= yu = —Ly' Hy + ¥,(3), (1s)
where
Vo y) = (0112)6) Ry g SRRy, 3 o A (10/28) (R0, R R RE
— Shryr iy KRR HE ) gy Yo g 4 (16)

and ki represents the (7,7)th clement of H;'. The coefficients in the powers

series ¥(y) are completely determined by the cumulants of Z, . These coeffi-

cients are of O(1) as # — o0 and the series converges for sufficiently small y.
Returning to (11) we now have

pnle) = (w22 [ [ explal(1m) Keui28) =y

X exp | [(l/n) S (Uit @) + - + it (@/ou,)] k(nu)](
j=2 !

{
X dty - dt, + 0. 17)

Moreover

(Un) Y. (Ot + ++ -+ ity(0] o)} Ko 2u)

]

= —(1/2n)[E2K(n'/%u®)|u, 8u,] t,t, + Ol £ |) (18)

L8

and

(1/n)[e2K(nPu®) e, Oup) = ko + o(1),
so that for large enough »
(U)K G0 00, o) 1ty > Vot = B, . (19)

Tollowing the line of argument in Ibragimov and Linnik [4, p. 165] we separate
the domain of integration in (17) into the two regions:

0< | K nti(logny, #=1l.,p (20)
and

2 lognl? < |t ] K e r=1,.,p @n
el S ——— e — I
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For 7 in the region defined by (21) we see from (18) and (19) that

Re | (jDit@/om) + - -+ ity(@/ou,)) K(nl/'wo)i

j=2

< —(nf8) t'H,t

for large enough n and small enough e. Moreover, from the inequality
tH,t > At

where A, represents the smallest eigenvalue of H,,, we deduce that if A is the
limit of A, as 7 — co then, for large cnough 7,

VHLE > (A — 7))t

where 7 is a small positive quantity for which 0 <% < A and we note that A
is strictly positive by Condition 1. Contributions to the integral (17) from regions
for which any argument ¢, is restricted to (21) can be neglected as of order

O(n?/2 exp{K(n'/?u%) — ny'u’} exp{—b,(log n)*})

for some positive constant b, . To see this we can, for instance, consider the
region

F={t|nmilegnf <t, S —e< K6 j=1,p—1}
and then
sup {exp(—(1/8) £'H,t)} < exp{—(n/8)( — 7) inf 1'%,
ter &
= exp{—}( — n)(log )4},

so that

[, exp(—(u8) 1,0 dt = Ofexp{=1(A — n)(log n})

as n —» 0, since I" has volume at most of O(1).
Thus (17) becomes

2\ P ) ,
Pule) = () expiKi ) — nyun}
212108 2y n~12(logn)? (&1 o oy
« f exp = (il — il o
Y pm1210g ny2 —a12(log n)? ?Zz 7! 1 duy » Bup)

X K(ﬂ”“’u“)i dty -+ dt,,
+ O(n?7? exp{K(n! *u’) — ny'u} exp(—b(log n)*))
4 O(e“"”), (22)
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For ¢ in the region defined by (20) we have for large enough »

21 é BN g
Y = (zll i L ﬂ—) K(n' 29
7! au,

=2

exp

1 B0

= 1Lt
2 bu,ou,

g oG i)t -+ O log ).

Then we get for the integral in (22)

n~12(log n)2 1 82K (2 /2u0) )
eXp |— 5 —F———F—" 1,00
Y n~12(log n)? 2 aua 6ub §

n=12(logn)®

Y —n~V2(log n)?

63A 1/2,,0 . N .
x [t 4§ S )it + OG- (og )] dty -

n~1/2(log ny? n~12(i0gn)® i 2K(111/2u‘3)
= : k. b,
Y—n=12(l0g 0y J‘-'Iz‘llaﬂogn)z o 2 ug 0wy bz
X [1 + O(n=Y(log n)®)] dt, *-- dt,
e (1 de(nmu(J) f P .
= J;m J7 exp | 2;0%% ooy dty o dt[1 + O(n—(log n)f)]

FROEN ™ 1 + 00 10g np).

e
= Qe (=g )]

Now
det[32K(n'2u0)(6u u')] = n*(det(H,) + O(u®)),

so that since the components of 4 have the same order as the components of y

and these are by definition of O(x/n!/2), we have

fdor (LA NV soratden(i, )y 21 4 O 5 i)

Qu cu' )
ol
— oy + Ol ),
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It follows that

_ 1
P = i deH,

X [1 4 O(i = l/n*/)][1 + O(n(log n)*)]
+ O(n?/2 exp{K(n'2u%) — nyu®} exp(—by(log n)%))
+ 0. (23)
‘Taking the second term on the right side of (23) we have
w2 exp(—by(log n)Y) = expf(log m){(p/2) — byflog wFT} = O(n)  (24)

for any & > 0 as n — c0. From (15) we also have

exp{K(n*/2u®) — ny'u"}

exp{K(n ") — ny'u’} = exp{—(u/2) yH'y + n¥,(3)} = O(exp(—bsn/p(n)),
25)

where b; is some positive constant and p(n) — o0 as # — oo. And taking the
third term on the right-hand side of (23) we see that for any £ > 0

e = o(exp{K(n'/%u®) — ny'u®) nF). (26)

Using (24), (25), and (26) in (23) we find that

i 1 L4 F1-1 [ 1721
Pal%) = PERE A exp{—§' H'x + n¥ (x/n'/2)}
X [1 + Ol = [l='2)].
Replacing x by —« we obtain the corresponding expression for p,(—x). This
proves the theorem.
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