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APPROXIMATIONS TO SOME FINITE SAMPLE DISTRIBUTIONS
ASSOCIATED WITH A FIRST-ORDER STOCHASTIC DIFFERENCE
EQUATION

By P. C. B. PHILLIPS!

Edgeworth series expansions are obtained of the finite sample distributions of the least
squares estimator and the associated ¢ ratio test statistic in the context of a first-order
noncircular stochastic difference equation. General formulae are given for these expan-
sions up to O(T ") where T is the sample size and explicit representations of these in terms
of the true parameters are derived up to O(T™ ?). Some numerical comparisons of the
approximations and the exact distributions are made in the case of the least squares
estimator.

1. INTRODUCTION

IN A RECENT ARTICLE, Basmann, et al. [2] have studied the finite sample
distribution of least squares estimators and associated test statistics in the context
of an incomplete system of stochastic difference equations. Their general conclu-
sion, which is supported by the evidence of a sampling experiment based on 1,000
replications, is that the asymptotic normal distribution theory does not seem to
provide a good guide to the finite sample distributions (given a sample size of 20)
as far as these can be determined by experimental evidence.

The present paper deals with a similar subject but differs from [2] in two
respects: In the first place, approximations to the relevant finite sample distribu-
tions are constructed on the basis of the Edgeworth series expansion rather than
with experimental data. Secondly, our analysis is confined to the first-order
noncircular stochastic difference equation with no exogenous variables. Natur-
ally, this choice of model reduces the scope of the present paper. However, the
results of Phillips [6] and Sargan [8] indicate that asymptotic expansions for the
finite sample distributions of econometric estimators can, in principle, be obtained
in much more complicated models with lagged endogenous variables and distur-
bances which need not be normally distributed. But, in view of the great
complexity of these expansions, even in relatively small time series models, it
seems worthwhile to consider how satisfactory the approximations derived from
the Edgeworth expansion prove to be in the very simple case selected for study
here. This should give us some guide as to whether or not the approach may be
useful in more complicated time series models.

! This research was supported in part by the Social Science Research Council, under grant number
HR 3432/1. 1 am most grateful to Mrs. Padmini Kurukulaaratchy for her considerable assistance in
programming the computations reported in the paper. I am also grateful to Michael Prior and Rachel
Britton for research assistance. Finally, I wish to thank the referees for their helpful and encouraging
comments.
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464 P. C. B. PHILLIPS

2. THE SAMPLING DISTRIBUTION OF THE LEAST SQUARES ESTIMATOR

The model we will use is the noncircular stochastic difference equation

Ve = ay,_1+u, t=...,-1,0,1,...;|a|]<1)
where the u, are independent and identically distributed n (0, a?). The least
squares estimator of « is given by & =y'Cyy/y'C,y where y'=(yo, ..., ¥7),

0 3 ... 00 1 0 ...00

30 ... 00 0 1 ...00
o R IS RS
0 0 3 0 0 0 ...10

0 0 ...00

Introducing u; = E(y'Cy) we can write
A ('Cry —m1)—a(y'Cy — uo)
a—a= -

(y'Coy —u2) + 2

since wq—au, = 0. Defining q; = (y'C;y — u;)/ T, we can now express the error in
the estimator & as

q1—aq;
Qtu/T

where q' = (q1, q,) and er(q) satisfies the conditions of the theorem in [6]. Thus,
PVT@a—a)=x)= P(\/% er(q) <x) can be developed in an Edgeworth expansion.
A convenient algorithm for finding the terms in this expansion is based on an
expansion of the characteristic function (c.f. Anderson and Sawa [1]) and this
approach is used in what follows.

Writing @ = A/B, we know that the joint characteristic function of (A, B) is

D(t,, t,) =[det {I - 2i(t,C, + 1,Co) 2} *

where X is the covariance matrix of y with (i, j)th element given by ol '02/ (1-
a?). We now have

PNT&@-a)<x)=P(A-rB<0)
=P(Q=<0),
wherer=a +x/ VTand Q = A —rB. The characteristic function of Q is therefore
P (t) = D(t, —1r)
= [det{I—2it(C;—rC,)Z}]*

a—a=er(q)=

T+1 .
=1 (1-2it5)%,
=1

where 84, . . ., 874, are the eigenvalues of (C; —rC,)3. The second characteristic
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(or cumulant generating function) of Q is
Y1) =log {y ()}

T+1
=—3 z log (1—2it5;)

T+1 o©
3 LXs (2tt6)

251 T+1

()’ Z 8;,

i=
so that the sth cumulant of Q is
ky=(s—1)12°"" _Ti:3;= (=112 tr (G- rC)2)".
i=

Since C; and X are Toeplitz matrices and C, asymptotically Toeplitz, we note that

F—l-f‘—i ]Zl 6 = _1— jﬂ {2af(A)(cos A —r)} dA + O(T—l)

-

(c.f. Hannan [3, p. 354]) where f(1) is the spectral density of y,. Thus k; = O(T)
and

ks

(k )S/Z = O(T_S/2+1)

k=
Moreover, from the above formulae we obtain

k,=(s— 1)!23"1(-2-7:;-) J”T {27f(A)(cos A — 1)}y dA +O(1)

~6-027(55) £0) e [ ea)y
< (cosAY dr +0O(1).
We now define Q' = (Q —k;)/Vk, so that
P(NT(&—ea)<x)=P(Q'<—ki/Vk).
The characteristic function of Q' is

exp {n (t/Vky) — ik t/Nko} = e exp { § f—é(it)s}

s=3

= -"/2{1+ 2 (it)? + (tt) + (k )(i t)}
+O(T ™3
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and inverting we obtain the distribution function

!

P(Q'=sw)= I_w i(z)dz +§—? Lw H;(2)i(z) dz +i—§‘ j_w H,(2)i(z) dz

w

+%(k’3)2 J H(2)i(z) dz + O(T—3/2)

where H,(z) is the Hermite polynomial of degree r and i(z)=
(1/27)* exp (=2%/2).
Thus, we have the following series expansion of the distribution function of

‘/7'(07 —a):
1) PNT@E@—-a)<x)= I(\—/_Il:_l) _k_51<3)(—_kl)
2

310 Wk,
k"t (4)(_k1) 10(k’3)2 (6)(_k1) 3/2
A 21) 2223 1o 2L ) L o(T
41 \Vk, 6! Vk, ( )

where I(z) = [ i(?) dt. But k, is a function of r = x/VT+a for all s, so we write
k, = k,(r) and consider the Taylor development of k, / \/IE; about the value atr = a.
We have

ki _ ki(a) , 3ki(a) X, 1 3’k (a) ﬁ 1 ’ki(a) x°

2 k= ate) | otile)
@ Yk, Vi@ o VT 2 o T 6 o T7

where R = T %(3*k(r*)/ar*)x*/24 and r* lies between r and «. Now

+R

ko= —xTo* _ —(r—a)To?
VVT1-ad) 1-a?
so that k;(a) =0. Thus, we can write (2) as

, X x? x?
3) ki= ll(a)\/—-]-j lz(a)?+l3(a)—7—:372'+R.
After some manipulation we obtain
1( o’
2—_.
tr (C,2) 1
+8(T—-2)a*+8(T—3)a’+...+8a*T7 1},

2
-«
2

o
1-a?

)2{2T+2(5T—4)a2

tr (C,2)’ = ( )2{(T) +2(T- Do’ +2(T-2)a*+.. . +2a>T},

1/ o \?
r(G2G2)= 5(1 — a2)
° {2(2T_ 1) +2(2T— 3)&3 +2(2T— 5)a5+ . +2a2T—1}’
and, therefore,
2 ’I'O'4
4) ky(a)=21tr (Ci—aCy)2)* =

1—-a?
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so that
I (@) = K@) _ dki(e)/or_ To’/(1-a’) =_( T )
‘ o V@ Lu(C-eC)IP  M-d
After some further algebra which is reported in full in [7] we find that
2T, ,
b(a)=——2s73+ O(T™)
(1-a)
and
JT1+a?) 6VTa? ,
I(a)= +O(T3).
3( ) ( —a )5/2 (1_a2)5/2 ( )
Writing (3) in the form
k’1=—m+lz(a) +l3(a) +0(r3/2)

we can now return to (1) and consider a Taylor development of I(—k1), I C)(—k?),
I¥(=k"), and I'(—k') about the value x/v/1—a>. We obtain

k=12 + 12 e A7)

) o

-7 (7)
-{—lz(af‘—;—ls(a) ;/ S (@) —}+o<r3/2)

peri=re(gE () D)o
YRR

b
Al a) () oy

a
( ) x2 x° L(e) 3x> lz(a)}
1-a? (l—az)3/2 T V1-a®> T

+O(T™Y),

4 " r@ X 1
Ik} =1 )(—JT:?) +0(T?)

i ﬁg?){(l_’;)y,a o,
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and
19k, =I(6>(—x )+o T
X x° x3 X
=—i( ){ -10 +15 }
/1_la2 (1_a2)5/2 (1_a2)3/2 /1_a2
+O(T 3).

Hence, collecting terms in (1) we have

) P(ﬁr&—a><x>=1(\/1iaz)+"(ﬁ)

X x° 1 (I(a)’x®
{ lz(a)T ls(a)T3/2 2WT2}

_Eé_,-( x )

31 W1—q?
_{ x2 _1 lz(a) x_s_ 312((1) x_3}
1—a? 1-a®»*? T J1-a®T

A 22—
1O(k’3)2i( x )

+
6! V1—a?
{ = 10 _ 15x}
(1-a®*? (1-a¥*? J1-a?
+0O(T %7

We now expand k3 and k) about the value r = a. We have

kg 2 ! 3
Ok 3(@) 72+ 0T = kie) +hl@) =+ O(T),

(6) k3= k3(a)+

say, and
) ki=ki(a)+O(T ).
Since k; =8 tr ((C; —rC,))? we find that

_dki(a) 24t (CE(Ci—aCy)2)?)
o Ru((Ci—aC)3)F?
48 tr (C1— aCy)2)’ tr (C,2(C12 — aC,3))
{2tr (Ci—aCy)2)}"?

h(a)
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Using (6) and (7) in (5) we can now write

®)  PATa-a)<x)=I (z—%)

il oo ol

3
+a; +0(T %7

ral ) +al ) |

where

a, =sk3(),
3 150 1
—_ 1 _ ' 2 _ 2
a 4!k4(a) o (k3(a)) +6ﬁh(a)\’1 a’,

__bL@-a’) ki)
2 T 6

(22 L 1, 3/2
(\/—1——(12>ﬁ 6k3(a)+O(T_ ),

__L@1-a?"? 3kia)h@)(1-a’)
N 3T
_h@)(1-a?)? ki@, 100(k}(@)’
31T 41 6!
_1(1+a” 6a° ki) «a
T(l—a2)+(1—a2)T JT \\/1—a2)
h(a)V1-a® ki) 100(ky(@))’,
6VT 41 6!

and

__2( a’\ K@) a ) 10(ki(a)’
s (1—a2)+3~/?\~/1—a2) 6!

T
Setting w = x/v'1—a” we have the following approximation to the distribution
function P(«/i"(& —a)/V1—a’<w)upto O(TV):

9) I(w)+i(w)(ag+aw +a,w’+asw>+asw’).

An alternative representation of this approximation up to O(T~ ") is given by

I(W +b0+b1W +b2W2+b3W3)
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where the coefficients are

_ks(a)
bo_ 6 >
3
b1=4—!k£(a) -0 (ks(a)) + \/——h(a)\'l a?,

bz_(\hz% >~/1i 6@

and

1(1+a2) 6a’

b3:_7" 1-a%/ (1-a3T

_205e)_a ) k)i’ ki) L
3 VT Wi-a? 6VT 41
Up to O(T?) the approximation is

10 100+ ()% B |

In the Appendix we obtain the following explicit representation of k;(a) up to
o(1):

6To’a

ki(a) = ﬁ+ o(1),
so that, using (4), we have
6a 3
kite)=7=( 255 ) vor )

and thus (10) becomes

11y I(w )+l%(ﬁi—oﬁ)(w2+1)'

The corresponding approximate density is

(12) i(w){l +%(ﬁ)(w - w3)}.

We notice from both these expressions that the correction term of O(T™ %)
increases in magnitude with «. This suggests that the normal approximation is less
satisfactory in the less stable case.
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3. DISTRIBUTION OF THE ¢ RATIO

In addition to the distribution of &, we wish also to approximate the sampling
distribution of the ¢ ratio test statistic ¢ = (& —a)/s; where s2 = ¢%/y'C,y and

¢* =7 1,2 (e —éyi—1)’
1 { o~ CIY)}
o] LA A
y'Ciy —ay'Gyy

y'Cay
where
\/T 1{(}' G3y)(y' Coy) = (y'Cry) }

t=

‘/7'(‘11 —aq,)

[ T { 2 ,ul LMz B Ih}
[ — +_. —_—
T—1 q939.—q1 qu'*'T 2 T T T2

=VTer(q), say,

where ¢; = (y'Cy —\;/L_;)/T, w; =tr (GX), and q' = (41, 92, q3)-

The function t = v Ter(q) satisfies the conditions of the theorem in [6] and thus
the distribution of ¢ admits an Edgeworth series expansion. Since the characteris-
tic function of the g; is readily available, a convenient algorithm for deriving the
expansion is based, as in Section 2, on an expansion of the characteristic function.
Here we follow the general procedure outlined in [8].

Writing the derivatives of er(q) evaluated at the origin as, for instance e; =
der(0)/dq; and using the tensor summation convention, we have from the Taylor
development of er(q),

t= ‘/7'( eq; +3e €idiqx se,ktqﬂklb) +0O(T7*?)
1 1 ,
=ed ﬁe,kq;qk Te,kzq,qqu +0(T*?),

where g; = JT. g;- Now the characteristic function of the y'Gy is

1

x(z)= [det {I—Zi(z z,-C,-)Z}] -
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so that the characteristic function of g is
Z iW1Z1 a2y iaZs
0(z)=ex {lo ( (——))— - — }
PURNT) T Ty VT
The second characteristic of g is therefore

A(z)=log (6(2))

— _liog det {1—%(2_ 2fo>2}

T
_iM1Z1_iM222_iM323
VT JT VT
and successive derivatives of A(z) evaluated at the origin are given by
A= aA(0) 0,
9z,
_3°A0) 2
Aab - azaazb - T tr {(Caz)(cbz)}’
@0 —4i
Aabe = 5 or. = 7 T (GE)NGENC.2)
—4i
= GG,
and
a0 8
Agbea = 92.02,02.02, Tz[tr {(C2)NC2)(C2)G2)}

Hr {(C2)Co2)(C 2N G2} + tr {(CiE)GENC.E)(C, 2)}
Hr {(GE)CE)C2)NC DN+t {(GE)C2)(C.2)(C,2)}
+Hr {(GENGE)CZ) (G2

We now define

a1 = Ajejére, @2 = Ajkim€i€r€iem,
a3 = Ya€abVb, 4= Agp€abs
as= 6abeab, A6 = €abcYaYbYer
a7 = €apchabVes ag = YpCapAbccdYas
9= Agg€apApcleas a10= Yaeabﬁb,

and

2_ _

W= —Apeer, Ya = Aakr,

Ba = Agjkeje, Sab = Aabier-
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Proceeding along the general lines described in [8], we then obtain the approxima-
tion to P(t<x) up to O(T ") given by

RIRCRENEE
s )G
e AC

+(a2 iy lajay @ 30, ag)

24 2T 12T 6T 4T 2T

(e S ad)(L)io(X) = 1(2) (2)
ferelZ)relZ) +el2) +el2) ),

where
o la 64
60:2w:}7+6w13+2w33/7’
1 ia a; ai «a
o= la s
+i( iy za1a4_&_a3a4_ﬂ>
w*\24 2JT 12T 6T 4T 2T
+15(_?_w_a_§)
w®\72 12¥T 8T/’
1 i,
?(? 2~/_)
1((12 layy  lagag @  azoy ag)
ST 854 oJT 12¥T 6T 4T 2T
10{a] iaja; a3
_w—(?i_ﬁ—ﬁ)
and
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Note that in the above ia, ias, and ia are real in view of the definition of ay, as,
and @, and the form of Ay,.
An alternative representation of (13) up to oO(T ) is

1(%+d,, +dl<£) +d2<£)2 +d3(%>3)

where| dy=co, diy=c,+c3/2, dy=c,, and d3=c3+c,co. The expansion up to
O(T ?) is simply

w  iGe(Derel)

From the calculations in the Appendix we obtain the explicit formulae

(7))

1< 2a )(1+a2)2
CG=—\—=)\——
2 T™W1-a* M —a?
and

1

2

= 1 _—
@ T

so that (14) becomes

= R

Once again we notice that the correction term of O(T*) on the normal approxi-
mation increases in magnitude with . Moreover, comparing (11) and (15) we note
the additional factor of (1/(1—a?))? in the correction term of (15). This suggests
that as a approaches unity, the normal approximation will be even less satisfac-
tory for the ¢ ratio than for &.>

(15) I(x)+

l—«

4. NAGAR-TYPE APPROXIMATIONS

An alternative approximation which has been found useful for comparative
purposes [9] is the normal distribution with first and second moments given by the
Nagar approximations. These approximations to the moments can be derived
from the Edgeworth expansion above as in [9].

2 In the original version of this paper [7] the explicit representation of the expansion given by (15)
had not been derived. In the numerical computations I then reported (in [7]) the ¢ ratio expansion was
at that stage calculated using (14) and the general formulae for the ¢; and ; given earlier in this section.
I have since discovered that a programming error in a loop of the program led to incorrect results in the
second run through the loop for the larger parameter value a = 0.8, although computations for « = 0.4
in the first run through the loop were correct. These incorrect results led to the reverse conclusion in[7]
that as a approached unity the normal approximation became more, rather than less, satisfactory.
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We introduce £;- to represent \/7’(& —a)/vY1—a’inSection 2 and t/w in Section
3. We have, in general,

Plér<w)=I(w+g,+gw+gw’ +gw’)+O0(T *?)

and introducing d = go+(1+g,)w + g,w’ +g;w" we find that the critical level of
&1 corresponding to a given probability p = I(d) is given by

(16) Er=—go+(1—g,+28082)d —gd’>+(2g5—g3)d’+R

where R = O(T *?). We can, in fact, regard (16) as a transformation from a
variate d with a standard normal distribution to the variate &5 (cf. [9]). Taking
expectations and assuming E(R) = O(T *'?) we have

(17)  E(r)=-g0—g+O0(T ).
Similarly,
(18)  E(éD)=gs+(1—g,+28082)°E(d*) +g3E(d")
+2808,E(d”) +2(285—g3)E(d*) + O(T %)
=1+gi—2g,+6808,+158%2—6g,+0(T 3.

The validity of these expansions will not be examined in detail here but we note
that for the case ér = \ff(c‘z —a)/v1—a® (17) becomes

L) -t (e ) L), o

Ji—a? 6 Vi—aNT
R

which accords with earlier results [4 and 10].

5. NUMERICAL COMPARISONS

Since the exact distribution of & can be calculated by numerical integration® it is
possible to assess the accuracy of the approximations to O(T ?) and O(T ")
developed in Section 2. Various values of T and « were selected and in Figures
1-4 we graph the exact distribution function of \/_7_"(62 —a)/¥1—a? against the
corresponding approximate distribution to O(T %) given by (11) and the asymp-
totic normal approximation.

We notice from Figures 1-4 that the exact distribution is negatively skewed and
downward biased. These features are more accentuated for a« =0.8 than for
a = 0.4 and the normal approximation is, therefore, less satisfactory in the less
stable case.* For a = 0.4 the O(T*) approximation captures the location of the

> The procedure employed here was Imhof’s numerical inversion of the characteristic function of a
quadratic form in normal variates [5].

* This confirms what was earlier implied by the correction term of O(T ) in (11) at the end of
Section 2.
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FIGURE2—T =10,a =0.8.
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FIGURE 4—T =20, a =0.8.
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distribution well and also gives a good approximation to the long left-hand tail
even for T=10. In places the O(T*) approximation overcorrects in the body
of the distribution around x=-1.5 and in the right-hand tail where it
overshoots unity. For T =20 and « = 0.4, the O(T ?) approximation is very close
indeed to the exact distribution.

When « = 0.8 the O(T?) approximation is much less satisfactory. For the
smaller sample size (T = 10) the error in the approximation is, in places, consider-
able and the overcorrection on the normal approximation error results in the
O(T %) approximation having the greater error in certain parts of the distribution.
Moreover, when T increases the error in the O(T %) approx1mat10n does not
disappear as quickly as in the case of « =0.4. For T =20 the O(T ) approxima-
tion is generally much closer to the exact distribution than the normal but it fails to
pick up the left-hand tail as well as in the more stable case and still overshoots
unity rather early

The O(T" ") approximation to the distribution of ﬁ(a a)/¥1—a? has also
been calculated for similar values of T and « and in Figures 5 and 6 we compare

.000
T=20, @=0.4
800 -
.600 [
. NORMAL
APPROXIMATION

400

APPROXIMATION

T00(T?)
200 APPROXIMATION

To 0 (T
x
.000 1 | 1 ] 1 |
-3.000 -2.250 ~-1.500 -.750 .000 .750 1.500 2.250 3.000

FIGURE 5—T=20,a=04.

this higher order approximation with the O(T*) and normal approx1mat10ns
when T'=20.° For a = 0.4 we see from the figures that the O(7T~ ") and O(T_ )
approximations are close together; and where they do differ the O(T ") approxi-
mation appears to be correcting in those parts of the distribution where the
O(T?) approximation initially overcorrected on the normal approximation; that
is, in the region around x = —1.5 and in the upper right-hand tail.

* Comparisons for other values of T are recorded in [7].
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1.000 =
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.800 |-
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400 - To 0 (T

APPROXIMATION

To O(T™")
.200

bd
.000 1 1 1 1 1
-3.000 -2.250 -1.500 -.750 .000 .750 1.500 2.250 3.000

FIGURE 6—T=20,a=0.8.

In the less stable case when a = 0.8 the O(T") approximation overcorrects
badly on the O(T™?) approximation. This overcorrection occurs mainly in the tails
and, although it is moderated as T increases, it is still sufficiently large for T =20

to seriously distort the tail area probabilities.

Tail area probabilities have been calculated for the distribution of & where
direct comparisons can be made between the approximate and exact probabllmes
In Tables I-IV we record the exact and approximate values of P(I T(a—

TABLE 1
TAiL PROBABILITIES: T=10, a =0.4

Approxnmatlon Nagar

X Exact to O(T™") Approximation Normal
1.95 0.0546 0.0531 0.0619 0.0511
2.00 0.0498 0.0496 0.0555 0.0455
2.05 0.0453 0.0466 0.0496 0.0403
2.10 0.0412 0.0439 0.0433 0.0357
2.15 0.0375 0.0416 0.0395 0.0315
2.20 0.0340 0.0359 0.0351 0.0278
225 0.0309 0.0377 0.0311 0.0244
2.30 0.0279 0.0361 0.0275 0.0214
2.35 0.0253 0.0346 0.0243 0.0187
2.40 0.0228 0.0332 0.0214 0.0163
2.45 0.0206 0.0318 0.0189 0.0142
2.50 0.0185 0.0306 0.0165 0.0124
2.55 0.0166 0.0293 0.0145 0.0107
2.60 0.0149 0.0281 0.0127 0.0093
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TABLE II
TAIL PROBABILITIES: T=10, «a =0.8

Approximation Nagar

X Exact to O(T™ 1) Approximation Normal
1.95 0.1363 0.2661 0.3015 0.0511
2.00 0.1302 0.2725 0.2891 0.0455
2.05 0.1244 0.2175 0.2771 0.0403
2.10 0.1188 0.2699 0.2654 0.0357
2.15 0.1134 0.2677 0.2540 0.0315
2.20 0.1083 0.2649 0.2430 0.0278
2.25 0.1034 0.2613 0.2323 0.0244
2.30 0.0987 0.2570 0.2220 0.0214
2.35 0.0942 0.2521 0.2119 0.0187
2.40 0.0899 0.2464 0.2022 0.0163
2.45 0.0858 0.2400 0.1928 0.0142
2.50 0.0819 0.2330 0.1837 0.0124
2.55 0.0781 0.2255 0.1750 0.0107
2.60 0.0745 0.2174 0.1665 0.0093

a)/¥1—=a?|> X) in the region 1.95< X <2.60 for T=10, T=30, and a = 0.4,
0.8. In addition to the O(T ') approximation derived from (9), we give the tail
probabilities of the Nagar approximation described in Section 4 and those of the
asymptotic normal approximation. One feature of the results which stands out is
the extent to which the O(T~') approximation overestimates the symmetric tail
probabilities for the less stable case a = 0.8. The Nagar approximation is even
worse for moderate X values, but improves on the O(7™ ") results for large X. On
the other hand, for & = 0.4 the O(T" ') approximation gives much better results

and is, for T=30, generally closer to the exact values than is the Nagar
approximation.

TABLE 111
TAIL PROBABILITIES: T=30, a=0.4

Approximation Nagar

X Exact to O(T™Y) Approximation Normal
1.95 0.0511 0.0503 0.0503 0.0511
2.00 0.0460 0.0453 0.0472 0.0455
2.05 0.0414 0.0409 0.0419 0.0403
2.10 0.0373 0.0369 0.0372 0.0357
2.15 0.0335 0.0333 0.0329 0.0315
2.20 0.0302 0.0301 0.0290 0.0278
2.25 0.0272 0.0272 0.0255 0.0244
2.30 0.0245 0.0247 0.0224 0.0214
2.35 0.0220 0.0224 0.0197 0.0187
2.40 0.0198 0.0204 0.0172 0.0163
2.45 0.0178 0.0185 0.0150 0.0142
2.50 0.0161 0.0169 0.0131 0.0124
2.55 0.0144 0.0154 0.0113 0.0107

2:6() 0.0130 0.0141 0.0098 0.0093
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TABLE 1V
TAIL PROBABILITIES: T=30, a =0.8

Approximation Nagar

X Exact to O(T™ ) Approximation Normal
1.95 0.1007 0.1157 0.1341 0.0511
2.00 0.0955 0.1146 0.1243 0.0455
2.05 0.0905 0.1137 0.1151 0.0403
2:10 0.0857 0.1128 0.1064 0.0357
2.15 0.0812 0.1118 0.0982 0.0315
2.20 0.0769 0.1089 0.0906 0.0278
2.25 0.0728 0.1045 0.0834 0.0244
2.30 0.0689 0.1002 0.0767 0.0214
2.35 0.0652 0.0958 0.0704 0.0187
2.40 0.0617 0.0915 0.0646 0.0163
2.45 0.0584 0.0872 0.0591 0.0142
2.50 0.0552 0.0830 0.0541 0.0124
2.55 0.0522 0.0787 0.0494 0.0107
2.60 0.0493 0.0745 0.0450 0.0093

In some cases the Nagar approximation does well and is frequently a good deal
better than the normal approximation. However, the Nagar approximation
performs poorly relative to the O(T™') approximation in the region of X =2.00
for all values of T and a.

Clearly, the overestimation of the tail probabilities by the O(T ") approxima-
tion is the result of the overcorrection of this approximation in the tails of the
distribution. Some efforts were made to overcome this problem and improve on
the results of the O(T~") approximation given in the tables. The alternative
representation of the distribution function as

(19) I(X+bo+b, X +b,X*+b,X>)

(given in Section 2) was tried since it has the useful property that it lies in the [0, 1]
interval. But this form of the approximation gave poor results with very thin tails
in the case of a = 0.8.° Monotonic approximations derived from (19) along the
lines of Sargan and Mikhail [9] also gave poor results.

6. CONCLUSION

One of the main points to stand out from the computations reported in the
previous section is the fact that the stability of the model is of importance in the
performance of the Edgeworth expansion. In general, for a less stable model we
seem to get a less satisfactory representation of the finite sample distribution of
the least squares estimator. Intuitively, this is likely to be tied up with the fact that
when |a|=1 the limiting distribution of & is no longer normal. When |a|> 1 the

S This appears to be the result of the signs of the coefficients b, in (19) and as in (9). In particular, in
the cases considered, as was negative and b5 positive. With a5 <0 the left-hand tail of (9) is fattened for
large (negative) X, while with b3 >0 the left-hand tail of (19) is thinned out for large (negative) X.
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limiting distribution of &, suitably normalized, is Cauchy while for |a|=1 the
distribution is not known in closed form although it is known not to be normal
[11].

In the case of the ¢ ratio we have not computed the exact distribution so we
cannot directly confirm that the performance of the Edgeworth expansion is also
less satisfactory in the less stable case. However, it seems likely that this will be so.
For, the explicit representation of this expansion to O(T*) given by (15) indicates
that convergence to the normal approximation with increasing 7T is even slower as
« approaches unity for the ¢ ratio than for &.” Moreover, although the ¢ ratio has a
limiting normal distribution for all values of « satisfying |a|>1 as well as [a| <1,
the asymptotic distribution has not been determined in the case |a|=1 and this
case is likely to be the one exception to the usual theory [12].

In the Introduction we suggested that our results in this simple autoregressive
model should help us to assess the usefulness of the Edgeworth approximation in
more general dynamic models. It turns out, however, that our results are not as
unambiguous as we would have liked. On the one hand, our computations in
Section 5 tend to confirm the general conclusion in [2] that asymptotic theory does
not provide a good guide to the finite sample distribution of estimators and test
statistics in dynamic models. In addition, we find encouragement in that good
approximations can be obtained by the Edgeworth expansion in some cases, even
for quite small sample sizes. But, on the other hand, our results suggest caution in
that the reliability of the approximations does seem sensitive to the stability of the
model and, when the approximations are unreliable, tail area probabilities can be
badly distorted. Further work seems desirable on a number of these points.

University of Essex

Manuscript received June, 1975; revision received November, 1975.

APPENDIX

The purpose of this appendix is to indicate how explicit representations of the expansions given in
Sections 2 and 3 of the paper can be derived and to detail these derivations in the case of the expansions
up to O(T 2). Taking the distribution of & first we see that the coefficients a; (i=1,...,5) in (9)
depend on k,(r) and its derivatives, both evaluated at r = . In particular we need k3(a), 9k 3(a)/dr, and
k4(a). Then

k3(a)

(ka(@))>®
ok3(a) &k3(a)/8r_§ k3(a)oky(a)/or
ar  (ka(a)? 2 (ko))

k3(a)=

and
ky(a)

k(@)= )

7 As Iindicated in Footnote 2, an error in the program for the computation of the ¢ ratio expansion
from the general formula (14) led to the reverse conclusion in the original version of this paper [7].
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From the general formula in Section 2 we have
T\ & " .
(20) ky(r)=(s— 1)!25‘1(2—) Y (;)(—r)s_’ I 2af(A)) (cos AY dA +O(1).
7/ j=o o
Thus, k,(r) is a polynomial in r whose coefficients can be determined up to O(1) by evaluating the
integrals

ey [ @mo) eos(h)da

for various integers j; and, using standard trigonometric formulae, we can then obtain

I" (2mf(A)) (cos AY dA.

—ar

For even quite small s (s =3, 4) the algebra involved is exceedingly heavy. We tiote, however, that
since
2s

ag
Qaf)y =r——nvwm
O (e T
(21) can be evaluated using residue theory as follows:
a T ijA dA
2mf(V))’ cos (jA) dA = 25[ —f S
| eaory s ar=| 5w
O_ZSJ- z]'+s—1 dZ
it (1—az) (z =)'

i

jrs—1
(1-az)’(z—a)

1 ds—l/ gi+s—1
2 .
= 52 l { - )}'
oA - D dzF \(1—az)

= 0-2’27r{Residue of atz = a}

When s =3 we obtain

" i

[ @atry cos 0 ar = 02375 5)

- 2(1—a”)

] [2+8a2+2a4L3(1+a2)j+ .2]
(1—112)2 T 1+a? ]

and then, after more algebra, we find

N 2+8a%+2a*
)2 dr=2 6(——————)
| aator a=2mo{ S5 0550),
T + 2
J' (2uf(r))? cos A dr = 2770_6(3_01_(1_2(15_)),
o (1-a)
T + 2+ 4
I @af(r))® cos® A dA = 27706(1—10&%),
- 2(1—a”)
and
" " a(9+19a2—5a“+a6)
J_,, 27f(A))° cos” A dA =2mo ( 20=a°
Returning to (20) we find for s =3
8To°
(22 ks(’)—(l_az)s

3
. {%(9+ 19a2—5a4+a6)—§r(1+ 10a%+a®)

+9r%a(1 +a?)-r( +4a2+a4)} +0(1)
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so that

8T’ 23 6To’a
ki(a) (4(1 _a2)5)3a(1 a’)’+0(1) a _a2)2+ O(1).

This enables us to obtain an explicit representation of the o1 expansion in Section 2. To do the
same for the expansion up to O(T™Y) we need dks(a)/ar, which can be readily deduced from (22)
above, and k4(a), which can be obtained in the same way as k5(a).

Turning now to the ¢ ratio, we note that the expansion up to O(T™*) depends on derivatives of er(q)
up to the second order and derivatives of A (z) up to the third order (both evaluated at the origin). First
of all, we see that

_Taza _ To? _ To?
M1 1-a? M2 1-a? M3 1-a?
and then
2 T%*
Il'zll's—lh—l_ 2
a
Hence,
1 /T-1 a [T-1
e=— —T—(l—az), e=—— —T—(l—a)z» e3=0,
2a_[T-1 1+2a> [T-1
en=-3 T(l—az), €2z en="">3 —T—(l—az),
1 T-1 a [T—-1
313—6’31—‘2 7 T (1_‘12)’ 322=07 T(l_az),

a [T-1
923=932=? T(l'az), e33=0.

2
Now w“ = —A;xe;e, and

A= -2 (GENGE)

0 =2(LV I 0-0)) w (€ macsy
o T
-1

LT3 )T o

so that

T\¢* T 1-a?
1
T

Setting 1 = iAjq we also have

iay = iAjeexe; = Njueierer
and

8
N11= o7 tr (C,2)?,
8 2
N121 = MN211 = "1112=Wtr {(Ci2) G2},
8 2
M22= M221= M212 = 1372 tr {C,2(C2)%},

8
M222= 7372 tr (G,3)?,



FINITE SAMPLE DISTRIBUTIONS 485
so that

(T—l )3/21( 670’
) \1-a??

)+0(r3/2)

~ 7)o

We find after further algebra along the same lines that
a3 = (A4i€)ean (Apker)
_ _( 2a )(3+2a2+3a4

Vi-e®) (1-a??

)+0(r‘)

and
Ay = A€

- (%)(3?16:1:;; 4)+o(r‘).

Thus, the coefficients in the expansion (14) of the paper are given by

ia; 1 1( Py )(1+3a2) 3/2
co=—*+—=(azta,;)=—\—= +O(T %)
6 T o Y VTWi—a\1-a?
and
c2=—(i"‘—‘+“—3_ =i_(2— _"‘)(”“2)2+0(r3’2).
6 2V TW1-a? \M+a?
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