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THE ITERATED MINIMUM DISTANCE ESTIMATOR AND
THE QUASI-MAXIMUM LIKELIHOOD ESTIMATOR

By P. C. B. PHiLLIPS!

A multiple equation nonlinear regression model with serially independent disturbances
is considered. The estimation of the parameters in this model by maximum likelihood
and minimum distance methods is discussed and our main subject is the relationship
between these procedures. We establish that if the number of observations in a sample is
sufficiently large, the iterated minimum distance procedure converges almost surely and
the limit of this sequence of iterations is the quasi-maximum likelihood estimator.

1. INTRODUCTION

IN THIS PAPER we consider the model
(1) Ve =gt(a0) + u, t=1,2,..)

where y, is an m x 1 vector of observable random functions of discrete time (¢)
and g, is a vector of known functions which depend on a p x 1 vector of unknown
parameters whose true value is denoted by a,. In general, g, is a function of a
number of exogenous variables as well as o, so that the function is time dependent.
The last component of the model is the vector u, of additive stochastic disturbances.

The non-linear regression model (1) has recently been the subject of discussion
by various authors [2, 3, 4, 5, 6, and 7]. The purpose of these investigations has, in
the main, been to suggest procedures for estimating the unknown parameters
in (1) and to derive the asymptotic properties of these estimators under varying
assumptions about the stochastic properties of u,. The aim of the present paper
is to consider, in particular, the iterated minimum distance estimator (MDE)
proposed by Malinvaud [5] and to discuss the relationship between this estimator
and the quasi-maximum likelihood (QML) estimator when the disturbances
in (1) are serially independent.

We start with the following assumption :

ASSUMPTION 1 : (i) The parameter vector ay lies in a compact set ¢ in p-dimensional
Euclidean space RP. (ii) The disturbance vectors {u,:t = 1,2,...} are stochastically
independent and identically distributed with zero mean and positive definite covariance
matrix Q. (iii) The elements of g, are continuous functions on ¢.

Any vector a4(S) in ¢ which minimizes the quadratic form

T
RT(a) =T! Z (.Vt - gt(a)),S(Yt - gt(a)),
t=1
given the observations {y,:t = 1,..., T} and some positive definite matrix S,
iscalled a MDE of a,,. The fact that a1(S) exists under Assumption 1 as a measurable

' T wish to thank a referee for his helpful comments and suggestions on earlier drafts of this paper.
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function of y,,..., y; follows directly from Lemma 2 of Jennrich [3]. On the
other hand, the QML estimator d; of a, is obtained by maximizing with respect
to a in ¢ what would be the likelihood function if the u, were normally distributed.
Concentrating the likelihood function with respect to «, we find that &, minimizes

T
log det {T_l Z (yt - g:(a))(y} - gt(a))’}‘
t=1

It has been suggested [S and 7] that if we iterate the MDE a(S) by replacing S
at each iteration with the inverse of the moment matrix of residuals {u} =
v — glag(S)):t = 1,..., T} fromthe previous iteration, we will arrive eventually at
the QML estimator &;. This conjecture raises two questions: (i) whether the itera-
tion converges; (1) whether the outcome of the iteration (given that it does converge)
depends on the choice of S used at the start of the iteration. We will study both
questions and show that, at least for large enough T, the iteration does converge
and the limit point, which is independent of S, is 4.

2. STRONG CONVERGENCE OF o7(S) AND 4,

Our notation is based on Jennrich [3). Thus, if {x,, y,:t = 1,..., T} are sequences
of real vectors, then we represent T~ ' £T_, x,y, by (x, y); and if the elements of
(x, y)r converge to finite limits as T — oo the limit matrix is denoted by (x, y)
and is called the matrix tail product. Moreover, if { fi(x): t = 1,..., T} is a sequence
of real valued vector functions on ¢ and (f(x), f(f)); = (f(«), f(f)) uniformly for
all « and f in ¢, then we say that the matrix tail product of f exists in ¢. The tail
product in this case is a matrix function on ¢ x ¢ and its elements are continuous
if the functions f; are continuous for all t. We now add the following assumption:

ASSUMPTION 2 : (1) The matrix tail product (g(o), g(B)) exists for all (o, B) in ¢ x ¢.
(i) The matrix tail product (g(o) — g(to), (o) — g(ato)) is positive definite for all
o # ag in .

Part (i) of Assumption 2 requires that the vector «, be identifiable in
{g(2):t = 1,2,...} and this implicitly imposes conditions on the components
of the model which make up the systematic component g,(«,). For instance, in
the constrained linear model y, = A(x,)z, + u, where the elements of the matrix A
are subject to a number of restrictions and can therefore be regarded as functions
of a smaller set of parameters comprising the vector « and z, is a vector of exogenous
variables, Assumption 2(ii) implies that if the matrix tail product of z is non-
singular then o, is identifiable in A(x,). Similar assumptions have been made by
other writers [3, 4, and 6].

For a in ¢ and some positive definite matrix S; we define

Or(®) = tr {Sy(g(a) — (o), g(@) — g(otg))r} -
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The asymptotic behavior of Qr(«) is given by the following result whose proof is
straightforward and is omitted.

LEMMA 1: If Assumption 2 is satisfied and Sy converges almost surely to a positive
definite matrix S, then Q (o) converges almost surely to

Q) = tr{S(gle) — glxxo), gl) — glaro))}

and Q is continuous on ¢. Moreover, Q() is positive for all a in ¢ not equal to ay.

We now have the following theorem:

THEOREM 1 : If Assumptions 1 and 2 are satisfied and if S is an arbitrary positive
definite matrix, then the MDE o(S) converges almost surely to oq and (y — g(a(S)),
vy — glo(S))y converges almost surely to Q.

This theorem is a simple extension of Jennrich’s Theorem 6 [3] and can be
established in essentially the same way. Using the strong law of large numbers?
we know that Rp(a) = Q(a) + tr (SQ) almost surely and uniformly for o in ¢.
Hence, if a* is a limit point? of the set of points in the sequence {a(S)}, it follows
from Lemma 1 and the inequality R (x(S)) < Rp(a°) that Q(a*) + tr(SQ) <
tr (SQ). Since Q attains its minimum only at «,, we have o* = o, and ar(S) — o,
almost surely. The fact that (y — g(ar(S)), y — gla(S))r — @ almost surely now
follows because Q(a,) = 0.

THEOREM 2 : If Assumptions 1 and 2 are satisfied then the QML estimator 6 — o
almost surely.

PROOF : Writing D,(x) = log det (y — g(a), y — g(«))r we know that
@) D7) = indf D(a)

and the existence of &, is assured by the continuity of the elements of g and the

compactness of ¢. By the strong law of large numbers and Jennrich’s Theorem 4 3]
it follows that

(v — g(), y — g0)r = Q + (g(oo) — &), glato) — &) = D(ox)

almost surely and uniformly in ¢. We denote a limit point of the set of points in
the sequence {47} by «* and, setting D(x) = log det {D(«)}, we have the inequality
D(x*) < D(ap), in view of (2), so that by Assumption 2(ii) a* = «,. Hence, all
subsequences of { &;} converge to o, and the theorem is proved.

2 More precisely, the strong law of large numbers ensures that (u, u); — © almost surely and
(g(@) — g(@°), u); — 0 almost surely and uniformly in # by Jennrich’s Theorem 4 [3].

3 Such a point always exists by the Bolzano-Weierstrass theorem when the set of points in the
sequence {a;(S)} is infinite. If this set were finite, then there would be no limit points (in the set of
points of {a(S)} but we can use a* to denote a subsequential limit of the sequence. The argument then
follows in the same way. Of course, a* is also a subsequential limit when the set of points in the sequence
is infinite.
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Theorem 1 still holds if we replace S by S; and require that S, converge almost
surely to a positive definite matrix. Therefore, the sequence of estimators
{of:n = 1,2,...} defined by the operations

3 o= g ({SF1) )
and
4 ST = (y — g, y — gaP)r

are all strongly consistent, given S¥’ = S, an arbitrary positive definite matrix.
The fact that the estimators oY converge almost surely to the same value «, as
T — oo suggests that the iterative procedure involved in (3) and (4) should be
numerically stable for large enough T. We consider this question in the next
section.

3. NUMERICAL STABILITY OF THE ITERATED MDE
First of all, we introduce a number of additional assumptions that will be needed
in this section.

ASSUMPTION 3: The derivatives of g(a) up to the second order exist and are con-
tinuous on ¢. The matrix tail products involving g(a), 0g;(a)/0x, and d*g,(o)/ 0ot Oat’
exist foralli=1,...,m.

We denote by Wj(x)' the matrix whose (i, j)th element is w;;(x) = 0g;(x)/0;
and define for every positive definite matrix S of order n the matrix

T
My(S,a) = T~ 3 Wila) SW(a).

t=1

ASSUMPTION 4: For any positive definite matrix S of order m, M (S, o) has a
positive definite limit as T — oo.

Note that Assumption 4 implies that M 1(S, a,) is positive definite for large enough
T.

ASSUMPTION 5: The vector a,, lies in the interior of ¢.

In view of Assumption 3, each estimator o{? in the sequence defined by (3) and
(4) satisfies the necessary conditions

T
(5 T Y WP {SE V7 — gef) =0
t=1
where S¢™V = (y — glaf™ "), vy — gaf~));. For (5) to be well defined we need

S§~1 to be nonsingular. Later in the paper (in the proof of Theorem 3) we will
show that this is so for large enough T. Since S~ ! depends on the previous



MINIMUM DISTANCE ESTIMATOR 453

member o ~ ! of the sequence {a{} we can write (5) as the implicit function iteration
(6) HyaP, af ™) =0 (n=23,..)

To ensure that at each stage ! is a minimum distance estimator it is usual to
require that o{") minimizes

gP() = tr [{ST V1 1y — g, y — g(@)7]

in ¢. This brings us back to the iteration defined by (3) and (4). An alternative
which we adopt in the following is to combine (6) with the requirement that both
of and off ™V are restricted to an open sphere in ¢ that contains «,, has center %
where H(ar, @) = 0, and fixed radius independent of T. Such a sphere is con-
structed below and it is shown that, for large enough T, o is then uniquely
defined by (6) in this region and is, moreover, the MDE for which a{(«) attains
its global minimum in ¢. The initial condition on «{}’ can be met by requiring
) to be a MDE (with, for example, S = I,)) so that, for large enough T, o
lies in a suitable neighborhood of «,. For large T, there will, therefore, be no real
difference between this formulation of the iteration and that based on (3) and (4).

THEOREM 3: If Assumptions 1 through 5 are satisfied then there exists a neighbor-
hood N of o, in ¢ such that for almost every y = {y,:1,2,...} there is an integer
T(y) for which the iteration (6) will converge from any starting value o'}’ in N for
all T = T(y). The point of attraction of this iteration is 8, the QML estimator of o.

STRUCTURE OF THE PROOF : Since the proof of the theorem is lengthy it may be
useful to comment on the main steps in the development of the argument :

(1) We first note that the QML estimator &, is one point of attraction of the
iteration (6). Later on in the proof we verify that this point of attraction is unique
in a fixed neighborhood of «, for large enough T.

(i) We then investigate the properties of the derivatives of the implicit function
H 1 and use these to establish that (a) for starting values of the iteration in a suitable
fixed neighborhood of «, (which we construct in the proof) a{” can be expressed
uniquely in the explicit form af = f,(«*~ V), and that (b) this explicit iteration is
numerically stable and converges to the same point of attraction for all starting
values in this neighborhood. The verification of (a) which occupies the main body
of the proof requires more than local uniqueness in a neighborhood of @, where
H{&r,ar) = 0. Instead, we need to establish global uniqueness for all points in
a neighborhood of o, which remains fixed for all values of T considered. This is
done in the theorem by appealing to one of the Gale-Nikaido univalence theorems
(1.4

PrOOF : By the statement **almost every y”” we mean almost every y with respect
to the probability measure induced by the stochastic properties of the u, on the
space of all realizations of the y, process.

* Use of the implicit function theorem alone ensures only a unique solution in a neighborhood of &;.
This neighborhood cannot be guaranteed to include a fixed neighborhood of «, for all large T as is
required by the theorem.
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To prove the numerical stability of (6) we must first verify that there is a point
of attraction &; in ¢ for which

(7 H(@r,ar) = 0.

The equation system (7) provides the necessary conditions for D, () to have a
stationary point at &y in the interior of ¢. According to Theorem 2 and Assump-
tion 5, such a point is given by the estimator &; when T is sufficiently large. More
precisely, for almost every y, there is a T;(y) such that &, lies in the interior of ¢
for all T > T,(y). Hence, the existence of at least one point of attraction is assured
and in the argument that follows we treat a; = ;. We will show later in the proof
that this point of attraction is unique in a fixed neighborhood of o, for large
enough T. But, first, we turn to investigate the derivatives of H .
From (5) and (6) we obtain’®

OH 1(a™, o~ 1)

® o = Az, ) & U, 2 )
where
T
A (a(n) O((" l) _ z (a(n) S(n l)}‘lw(a(n))

and U is the matrix whose (i, j)th element is

T 62 (n)
- go™)
B (n) (n—1) t

uyrd o) = T Y e . o
We let fand y be two vectors in ¢ and consider ¢H (8, y)/0a™. The (i, j)'th element
of this matrix is

S(n— 1)} - I(Yz _ gt(a(n)))_

o2 ’
(9) -T! ZZ W:kr(ﬁ)s (l) l“(ﬁ) + T l Z 14l glgﬂ)
t ki

T(‘y)—' l(yl - gl(ﬁ))

where Sr(y) = (y — g() y — g()r and Sy(y)7" = (s{(y). Writing y — g(y) =
y — &) + glotg) — g(y), it is clear from the strong law of large numbers and
Jennrich’s Theorem 4 [3] that S;(y) converges almost surely and uniformly in y
to

S(;) = Q + (glog) — g(y), glag) — g(7))

as T— co. S(y) is positive definite for all y and it follows from the uniform con-

vergence of Sy(y) that Si(y) is nonsingular for T sufficiently large. Hence, (9)
is well defined for large enough T.

By Assumption 3, (9) converges almost surely as T — o0 to
(10) —tr {S(y)™'(0g(B)/d0;, Og(P)/ar;)}
+tr {S()” (gl0) — g(B). 3%g(B)/da; Bav;)}

5 In much of what follows we omit the subscript T on «f to simplify the notation. This is unlikely
to cause confusion.
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uniformly for (f,7) in ¢ x ¢. Hence, dH (B, y)/da™ converges uniformly in (8, y)
as T— o to

H'(B,y) = AB,y) + UB,y)

where the (i, j)th elements of 4 and U are the first and second terms, respectively,
of (10). The elements of U(a,, a,) are clearly zero and, since S(ay) = €, it follows
from Assumption 4 that H' is nonsingular at (8,7) = (¢, o). But the elements
of H! are continuous functions of  and y, so there exists a closed sphere S* with
center a, in ¢ such that H' is nonsingular for all (8,y) in S* x S*. Moreover,
SH (B, y)/0a‘™ — H'(B, y) uniformly in (8, y) and, therefore, there exists an integer
T,(y) such that éH (B, 7)/0a'™ is nonsingular in S* x S* for all T = T,(y). We
select the radius of S* in such a way that the boundary of S* lies in the interior of ¢.
Then, from the strong convergence of @r to a,, we know that there exists an
integer T3(y) = T,(y) for which &;(y) is an interior point of S* when T = T;(y).
Hence, dH (&7, &7)/0a"™ is nonsingular for all T > T,(y) = max { T,(y), T5(y)}.

We now consider dH (B, y)/éa"~ V. The i'th row (which, for convenience, we
write as a column vector) of this matrix is

3S1(y)
Ja

(11) T~ 'Y WB'S1(y) ! S+, — g(B)

for T large enough to ensure that S,(y) is nonsingular. Since

OS1(y)/0a; = —(0g(y)/ 00, y — gD — (v — &(7), 08(y)/0at;)r
it follows from Assumption 3 that dS,(y)/dx; converges almost surely and uniform-
ly in 7 to
(12) S'(y) = —(3g(2)/0o;, y — 8() — (v — &(7), 08(y)/00x;).
Writing y, — g(B) = y, — gdao) + &() — g(B) in (11), we see that the (i, j)th
element of 0H (B, y)/da" ! converges almost surely and uniformly in (8, y) to
(13) —tr {S;) T 'S'(SH) (v — g(B), g(B)/dj)} -

The square matrix of order p whose (i, j)th element is given by (13) we denote by
H?*B,y). It then follows from (12) and (13) that the matrix H? is zero when
B=7y=0. '

From the continuity of (13) and the uniform convergence of dH (B, 7)/0a" ™1,
we can find for any ¢ > 0 an integer Ts(y) and an open sphere R* with center o,
and radius r such that

10H (B, y)/0a™~ V|l < &

for all T > Ti(y) and for all § and y in R*. The double vertical bars are used to
denote the Euclidean norm. We select
3/4
sup {sup [{GH (B, )0} ]I}

T2Ty(y) B.yeS*
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so that, taking R* to be within S*, we have
(14) [{OH (B, 7)/0a™} = {OH (B, y)/ 0"V} |
< [{GH (B, 7)/00™} ~ M| |H (B, y)/ G~ V|| < 3/4

forall T = Ty(y) = max {T,(y), Ts(y)} and all (8, y) e R* x R*.

To prove the theorem we now need a neighborhood of N of a, in which the
iteration is stable for all T sufficiently large. We must show first that there is a
sequence of spherical neighborhoods {S;:with center & and fixed radius} and
a sequence of unique continuously differentiable functions {f;} such that, for
large enough T, (i) S; = R*, (ii) f(&;) = &y, and (iii)) Hp(fr(7),7) = 0 for all
y € S¢. For, if conditions (i), (ii), and (iii) are satisfied we can write the iteration (6)
as

(15) o = frlaf ™)

when the starting value «f}’ € S;. Then, for some a* on the line segment joining

o~ and @, we have

w = Ofpe®) _
o = i = S @~ a),
and since
ofy _ [8H,\"' éH,
oup= D\ Gag

it follows from (14) that the iteration (15) is numericaliy stable (with the point of
attraction &) for all starting values in Sy. Finally, if we can find a fixed neighbor-
hood N of «, with the property that N = S; when T is sufficiently large, the
iteration (15) will converge for all starting values o'’ € N and the theorem will be
proved.

We construct S; as the open sphere with center &; and radius r/2 and let E
be the smallest closed cube containing S;. E; may always be constructed in such
a way that its sides are parallel to the axes in R”, so that the cube can be regarded
as a closed rectangular region. (This will be needed later.) Since &, — «, almost
surely, there exists an integer T,(y) such that E; < R* for all T = T,(y). Thus,
we have S; < E; « R* < S*for all T > T,(y). We now let N be the open sphere
with center o, and radius r/8. We can readily show that, for T > T,(y), N = S;.

We can now return to the remark made at the beginning of the proof that the
point of attraction @; = &y is unique in a neighborhood of «, for large T. We take
the neighborhood N and suppose e N is another point of attraction. Both j
and & are fixed points of the function f; in (15) and expanding f(f) in a Taylor
series about &, we have

1B = e + 103 )
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so that
7= _ Ofr(B%) -
(16) B—ar= m(ﬁ — ay)

where f* lies on the line segment joining § and ar. But, in view of (14) and the fact
that N = R* we have

lofz(B*)/0a V|| < 3/4,

for large T, so that (16) implies that § = &,..

Having constructed the neighborhood N of «, and the spheres S; such that
N < S; < R*, it remains to prove that conditions (i1) and (iii) are satisfied. The
i'th element of the vector H(f, y) is

T™1 ) (0gdBY /) Sr(») (v, — 24B))

which, according to earlier arguments about S(y) in this proof and by Assumption
3, converges almost surely as T — oo to

(17) tr {SG) (v — g(B), dg(B)/dn)}

uniformly in # and y. We denote by H(B, y) the vector whose i'th element is (17).
Then, H(ag, o) = 0 and dH(B, y)/0f = H '(B,7) by the uniform convergence of
CH(B,7)/¢p. Thus, H(B, y)/0B and ¢H (B, 7)/¢B are nonsingular for all § and y
in $*and T > T,(y).

We now define the mapping F:S* x S* — R2” and the sequence of mappings
{Fp:S* x S* - R?P} by

z=HB,y),w=7y;(By)eS* x §*

and

2 =HyB,y),w=y:(By)eS* x $*},
respectively. It follows that

(18)

6F(/3,~,;) _ [6H/6[3 0]
aB.y) | eHjoy I

is nonsingular for all (8, y)e S* x S* and

OFr(B,y) _ [6HT/6/3 0]
aB.y) CHp/oy 1

is nonsingular for all (8,y)e S* x S* and all T > T,(y). Moreover, from the
continuity of the elements of dH(f, y)/0p and the fact that OH(0g, 09)/0B is positive
definite, it follows that dH(p,7)/f is a positive quasi-definite matrix on S* x S*
(i.e.,thesymmetric part {0H/0B + (0H/3p)'}/2is positive definite). Thus, J0H(B, y)/0B
is a P matrix (see [1]) on S$* x S* and, from the form of (18), it is clear that
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JF(B, y)/0(B, y) is a P matrix on the same set. Since the eigenvalues of 0H (8, y)/0p
converge uniformly to the eigenvalues of 0H(f,y)/0p, there exists an integer
Tg(y) = T,(y) for which the eigenvalues of dH(f,y)/0f are positive whenever
T > Tg(y) and (B, y) € S* x S*. Thus, dH (B, y)/0B and, therefore, OF (B, y)/0(B, 7)
are P matrices on S* x S* when T > Ty(y).

By the Gale-Nikaido univalence theorem [1, Theorem 4], the sequence of
functions {F;:T > Tg(y)} are 1:1 mappings of the corresponding sequence of
closed rectangles {E; x E;:T > Ty(y)} onto {F(E; x E;):T > Ty(y)}. We can
write the sequence of inverse functions as

{B = Grz,w),y =w; (z,w)e F(E; x Ep)},

and the elements of G are continuously differentiable by the inverse function
theorem of advanced calculus. Since S; < E; < R* when T > T,(y), we have

19) {B=Grz,w),y =w; (z,w)e F(St x Sp)}

for T = T*(y) = max {Ty(y), Tg(y)}. St contains &; and & satisfies H (&, 1) = 0,
so that (0, w) e F(Sy x Sy) for all we S;. Setting z = 0 in (19) we have, for all.
T = T*(y), ar = G1(0,&;) and H{(G(0,7y),y) = O for all y € S;. Thus, conditions
(ii) and (iii) given earlier in the proof are satisfied.
The above argument is valid for almost all y and the theorem is proved with the
spherical neighborhood N of «, and the integer T(y) = max {Ty(y), T*(»)}.
Q.ED.

If the starting point of the iteration (6) is a) = ar(S) for some positive definite
matrix S, then Theorems 1 and 3 have the following corollary :

COROLLARY : If Assumptions 1-5 are satisfied and o}’ = a(S) for some positive
definite matrix S, then for almost all y there is an integer T(y, S) such that the
iteration (6) converges to 4 whenever T = T(y, S).

4. CONCLUSION

Theorem 3 tells us that, for any starting point o'}’ in a sufficiently small neighbor-
hood of the true value o, the iterated MDE converges to the QML estimator with
probability approaching one as T — oco. Given that of!’ in the implicit function
iteration (6) is itself a MDE, the condition that o’ be sufficiently close to «,
can be translated into a further restriction on the sample size, as indicated by the
Corollary of Theorem 3. Intuition suggests that a poor choice of the arbitrary
matrix S in of}) = a,(S) may necessitate a large sample size before convergence to
the QML estimator is assured. Nevertheless, given two different starting points
o7(S;) and ar(S,) to the iteration, where S; # S, are two arbitrary positive definite
matrices, we can be sure that the iterations converge on the same point (8r)
provided T > T(y) = max {T(y, S,), T(y, S,)}. In this sense, the iterated MDE
is independent of the choice of the positive definite matrix S used at the start of
the iteration.



MINIMUM DISTANCE ESTIMATOR 459

Another implication of the proof of Theorem 3 is that, if we start with an MDE
o) = ar(S), the unique solution o of (6) is indeed the MDE which minimizes
q‘}"(a) provided T is sufficiently large. To show this we consider «!?’ which satisfies

Hp($?, of) = 0 and thus the necessary conditions for ¢¥¥)(«) to have a local
minimum at o{?. But S — Q almost surely and

0’4 | 0%q()
(70( oo’ 50( oo’

almost surely and uniformly in o, where
(@) = tr {Q7 '(g(xo) — g(a), gl2o) — (@)} + n.
Moreover, from the proof of Theorem 3 we know that

0%q(a)
Oo 0o’

= —A(a, o0g) — Ula, o)

and this matrix is positive definite for all « € S*. Hence, 8%¢'?)(a)/0a 0o’ is positive
definite for « € S* and large T. In particular, it is positive definite for o« = of?
which lies in S; = S* whenever «f" lies in S;. Thus, ¢ is a local minimum of
q¥(a). Since a‘z’ is the only turning point of ¢%*)() in S, and since the global
minimum of q‘z’(a) converges almost surely to o, it follows that «f?’ is the global
minimum of ¢{*(«) for large enough T. The proof for n > 2 follows in the same way.
Before concluding this paper, two comments are in order. First, our discussion
has been rather abstract so that we have not yet mentioned that ot itself must,
in general, be found by an iterative procedure, and a starting value for this primary
iteration will be needed. However, provided o$’ = «,(S) does minimize tr {S~!
(y — g(@), y — g(a))7}, this fact does not affect our results. Finally, it may be worth
emphasizing that the equivalence of the iterated MDE and the QML estimator
for sufficiently large T has been established under conditions which, in themselves,
ensure that the QML estimator is strongly consistent. This fact is of some import-
ance (c.f. [5, pp. 338-340)). For, although the estimator &, can be formally regarded
as the MDE a(S7?!) where S; = (y — g(&7), vy — g(@7))r, the fact that &, — aq
almost surely does not follow from Theorem 1 because, in the absence of Theorem 2,
we cannot assert that S; converges almost surely as T — oo to a positive definite
matrix.
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