CHAPTER 8§

Some Computations Based on Observed Data Series of the
Exogenous Variable Component in Continuous Systems™

P.C.B. PHILLIPS

1. Introduction

One of the results of my earlier paper [2] indicated that the order of
magnitude of the asymptotic bias of estimators derived from the exact
discrete model that corresponds to a structural system of stochastic
differential equations depends on the smoothness properties of the
exogenous variable series. For instance, if the exogenous variables
arc non-random, uniformly bounded functions of time with continuous
derivatives to the third order that are also uniformly bounded then the
asymptotic bias has a smaller order of magnitude in terms of the sampling
interval than it would if the derivatives of the functions defining the
exogenous variables have discontinuities at a countable set of isolated
points on the real line. We can expect this result concerning asymptotic
bias to have practical implications in empirical work with finite samples.
A sampling cxperiment reported in [3] already indicates that, when the
the exogenous series are generated by a first-order system of stochastic
differential equations driven by pure noise (so that the exogenous series
are the realisations of processes whose second spectral moments do not
exist and are therefore no smoother than the endogenous serics), then
estimates from the exact discrete model are somewhat disappointing in
view of the greater computational burden involved in estimating this
model rather than the discrete approximation.

Hence, the question of what assumptions are realistic about the

* The paper is based on chapter 6 of my thesis [3]. I am very grateful to Professor
J. D. Sargan who first suggested to me that some computations with observed data series
might be uscful in this context. I wish also to thank Mrs. P. Kurukulaaratchy for her help
in my programming work and Mrs. Rachel Britton and Mrs, Jillian Smith for their as-
sistance in preparing the charts in this paper.
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exogenous variables does seem to be of some importance. Our purpose
in this paper is to tackle this question, but we do so in a rather indirect
way. We first take a number of observed data series of typical exogenous
variables and select the time unitin such a way that we have a reasonable
number of intermediate observations. Thus, we may specify the unit of
time to be a quarter when, in fact, we have weekly observations. The extra
observations enable us to compute more or less exactly the exogenous
variable component in the exact model; we can then consider how good
the approximation implicit in the exact model (see [2]) and the discrete
approximation (see [1], [S] and [6]) are for this particular series. We
carry out these computations for a large number of different eigenvalues
(both real and complex) so that we can determine whether or not the
performance of the approximations appears to be sensitive to the size
of the system eigenvalues.

2. The exogenous variable component and its approximations

The exogenous variable component in the exact discrete model corres-
ponding to a linear system of stochastic differential equations is known
to be of the form*

h

iexp {(sA)Bz(th — s)ds, (D

where A and B are the coefficient matrices in the structural system and
z is the vector of exogenous variables. We specify the dimensions of
Aand Btoben x nandn x m, respectively.

Taking the eigenvalues of A to be distinct, so that there exists a
non-singular matrix T which reduces A by a similarity transformation
to the diagonal matrix diag(%,...., 4,), we can write the ith element of
(1)as

h
Y22 ttPby [exp (sd)z(th — 5)ds. 2)
7T 0

where T = (r;;), T~ = (tY) and B = (b;)). The implication of expression
(2) 1s that provided we can obtain a good approximation to

' See [2] and [5].
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h
@ = [exp(sd))z(th — s5)ds, ©)
Q

for all j and [, our approximation to (1) will be a good one.
We already know that the discrete approximation implies an approxi-
mation to (1) which has the form

(I — 3hA)"YhB {z(th) + z(th — h)}/2, (4)
and that the exact model approximation to (1) given in [2] is?
E,z(th) + Esz(th — h) + E,z(th — 2h), (5)

where the clements of E,, E; and E, are non-linear functions® of the
elements at 4 and B.

The ith elements of (4) and (5) can be written

TITuon g
and

,Z; ; £t " b L), (7)
where

Dy = h(1 — 3hi)~ 1 {z[th) + z(th — h)}/2, (8)
and

DE, = h(hi))"
< {[{1 + (h2)} exp (hd)) — (h2,)? — 3(hA,)/2 — 1]z(th)
+ [{(h1,)* — 2} exp (hd)) + 2(hA) + 2]z(th — h)
+ [{1 = $hap} exp (hd;) — 4(hi) — 1]z(th — 20)}. (9)

It follows from (2), (6) and (7) that the discrete approximation and the

exact model imply as approximations to the integral @,; given by (3)
the expressions @, and ®;;, respectively.

If we are prepared to make certain assumptions about the exogenous

? This approximation is obtained by replacing z(th — s)in (1) by a three-point Lagrange
interpolation formula which passes through the threc consecutive observations z(th — 2h),
z(th — h) and z(th).

® These functions are stated in full in [2] and in Chapter 7 of this book.
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variables, then we can analyse the specification errors that result from
the use of the approximations (8) and (9). This type of analysis has bcen
carried out in Sargan [5] and Phillips [2]. When z has continuous,
uniformly bounded derivatives to the third order we know that * (drop-
ping the subscripts j and )

@, — PP = —(1 — 3h2)~ 1 {Eh3(A%z, + 220 + ZP) + O(h*)],

(10)
and

@, — ¢F = —1

et {sth — s)(2h — )} 2°(0) ds, (11)

t

Oty T

where  in the integrand on the right side of (11) is an unknown function
of s and satisfies th — 2h < 0 < th.

For our purposes in this paper we make two observations on these
expressions for the errors in the approximations. First, we see from
(10) and (11) that for an exogenous series satisfying the stated conditions
the moduli of the errors are

|®, — &P = O(h*) and |®, — F| = O(h*), (12)

uniformly in ¢. For small A, {(12) suggests that (9) will be a better approxi-
mation than (8).

Our second observation is that for fixed h the approximation &F
will be more reliable than @ when we allow the system eigenvalue to
take any value in the left half plane. To show this, we first define

6t h 7) = (1 — 2hA) (6, — P)
h
(1 — 3hA) [ e¥z(th — s)ds — Sh{z(th) + z(th — h}}.
0

As the real part of 2 tends to minus infinity @, itself converges to zero.
Hence, to investigate the relative behaviour of (10) and (11) (in this case)
we consider the ratio of the moduli

|®, — of ] {Bess(h — s5)(2h — 5)2°3) )ds]

3
3, — 0] ; (r T =T a3

* C.f [5]and [2].
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Keeping the imaginary part of 2 constant we take the upper limit of (13)
and obtain

Re( -+~ [P — P

limsup {|1 — 3hi|[§ {6 esth — 5) (2h — 5)2(0) ds|}

< Re(i)» —

14
liminf |s(t, b, £) (14)
Re(3)— —m

But the numerator on the right side of (14) is less than

h
#{ lim sup [1 —1hi| lim sup e®ReM} [ sth—s5)(2h—s)|220)] ds,
0

Re{l)— — o Re(i)—» —

where 0 < a < /. Hence, it follows from the fact that exp { —sRe ()} is a
higher-order infinity than |Re (4)| that the numerator on the right side
of (14) 1s zero. Moreover,

liminf |e(z, b, A)|

Re(i)— —w

[\%

lim inf
Re(2)— — o

h
|(1 — 3hA) [ e z(th — 5)ds| — $h|z(th) + z(th — h)|
Q

lim inf
Re(l})—= —

I

$h|z(th) + z(th — h)|

-1 = %hl)} e*z(th — s5) ds]

0
= 3h|z(th) + z(th — h)|

— limsup (1 — $h2)]

Re(/)— —»

= $h|z(th) + z(th — k),

h
{es*z(th — s5)ds
0

which is, in general, greater than zero. Therefore, we have

so that the bias of ¢f tends to zero faster than the bias of ®” when the
damping coefficient Re (1) becomes infinitely large.
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We next consider the case where the imaginary part of A becomes
increasingly large while the real part of A is taken as fixed. In this case

limsup |®, — &F|

Im(A)—

h
& limsup § e8¢ ||| Z3G)| s(h — s) (2h — s)ds

Im{i}—o 0O

IIA

h

= %5 esRe(A) lz(3)(0)‘ S(h _ S) (21‘1 . S) dS,
0

which is bounded uniformly in ¢. On the other hand,
liminf |@, — &P
Im{A}— 0

h
{ez(th — 5)ds

0

IV

lim inf sh|z(th) + z(th — h)|

Im(2)=> w

B ’1_—'{;17
h

5 e*z(th — s)ds

0

> hminf

Im{(4)—w

|
— lmsup4|——+—
lm(A)—aE 1 — %hi
h

{ez(th — s)ds

0o

$h|z(th) + z(th — h)]}

[im inf

Im(i)— x

Hence, we have

lim sup 1P Pl & J5 ™ Z0O) sth = 5) 2 — 5 ds
I | Py — o = liminf | {§ e¥z(th — s) ds]

Im(A)— =

. (15)

Since the numerator on the right side of (15) is not, in general, zero we
cannot expect the bias ¢, — &7 to improve relative to the bias ¢, — &7
as the frequency [i.e., Im ()] of the oscillations generated by the system
1s allowed to increase indefinitely.

However, it scems reasonable that in many economic models high-
frequency components are of much less importance than rapid rates of
adjustment. To the extent that high-frequency oscillations do occur in a
system the above theory gives us no reason to suppose that the exact
model approximation @ should detcriorate relative to ®P. But when
some of the equations of a model involve fast adjustment rates, which
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lead to eigenvalues with large real parts, our theory suggests that the
approximation ®f will improve relative to ®° even for a fixed sampling
interval k.

Thus, from these two observations, it would appear that while (8)
may provide a satisfactory approximation for some h and 4 it may be
unreliable when we have a system with somce equations that involve rapid
responses. The approximation (9) does not suffer from the same defect
and, in addition, has a bias which is smaller in terms of the sampling
interval. Hence, if the smoothness properties of z are realistic, (9) would
seem to be the superior approximation.

In the following sections of this paper, we will consider whether the
results of computations based on observed data series are consistent
with this classification of the approximations.

3. Weekly data with the time unit of a quarter

The economic series we consider in this section are:

(1) Financial Times Industrial Share Price Index;
(1)) 91-Day U.K. Treasury Bill Rate;
(iif) U.S. Prime Commercial Paper Rate (4- 6 months).

Weekly obscrvations of each of these series were recorded in the years
1965 through to 1972.

To calculate the exogenous variable integral &, and the approxi-
mations @” and @F for integral values of t (representing quarters in
the time period under consideration) we first specify the system eigen-
value . We do this according to a grid of values for the real and imaginary
parts of 2. The real part of A we classify into three groups:

(a) Strong damping: We take 30 values of Re (1) in the interval [ —3.00,
—2.9565] according to the scheme,

—3.00 + (k — 1)(0.0015), k=1,...,30

When Re (/) is in this region, the envelope of the system response
decays to 1/e or 37 % of its initial deviation in approximately 1 month
(we say the damping period is | month).
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(b) Medium damping: We take 30 values of Re (/) in the interval [ —0.25,
—0.2065] according to the scheme,

—025 + (k — 1)(0.0015), k=1,...,30

The damping period in this region 1s approximately | year.
(c) Weak damping: We take 30 values of Re (/) in the interval [ —0.05,
—0.0065] according to the scheme,

—0.05 + (k — 1)(0.0015), k=1,...,30

The damping period in this region is between 5 and 39 years.

The imaginary part of 2 we also classify into three groups according to
the length of the cycle period:?

(a) Short cycle: Im (L) = 2.00. The cycle period is approximately 3
quarters.

(b) Medium cycle: Im(2) = 0.65. The cycle period is approximately
10 quarters or 24 years.

(¢) Long cycle: Im(4) = 0.20. The cycle period is approximately 31
quarters or nearly 8 years.

We also consider real eigenvalues and in this case we set up a grid of
values of 4 that is the same as the one we have just described for the
real part of A when J is complex.

Using the weekly observations of the series, we calculated the integral
defining the exogenous variable component @, by numerical integration
for each quarter and for each of the eigenvalues according to the scheme
above. Neglecting the intermediate weekly observations, we then used
the quarterly observations on the series to calculate the approximations
P and @*. From the computed vatues of {@, &P, dF: ¢t =3,...,T}
where T (= 32) denotes the total number of quarters, the following
statistics were obtained

* Although we do not record the results here, 5 groups were actually used in the com-
putations according to the scheme 2.00 + (K — 1)(=045). k=1,....5
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(i) Root error sum of squares (RESS):

T
D-model: RESS = | Y (&, — 97)*;

t=3

T
E-model: RESS = | Y (&, — ).
t=3

Having found the RESS for every eigenvalue in a particular group, we
calculated the mean RESS in this group for each model. When the system
eigenvalue was complex we calculated the RESS separately for the real
and imaginary parts,

(i) Maximum deviation of the approximations from the integral:

DMAX = max |&, — &P,
14

EMAX = max|®, — o]
t

For the eigenvalues in a particular group we recorded the number of
times DM AX exceeded EM AS (denoted by DMAX > EMAX). Asin (i)
when /. was complex the real and imaginary parts were treated separately.

We present these statistics these statistics for the series under considera-
tion in tables 1, 2 and 3. The RESS statistic is a measure of the overall
performance of the approximations when the system eigenvalue lies in
a particular group. We note first that, in the case of each series, the E-
model has a mean RESS which is considerably smaller on the whole
than the D-model mean RESS, when the system eigenvalue has large
real and imaginary parts. Tables 1 and 2 indicate also that, even for
systems moderate damping factors and medium cycles, the E-model
approximations seems to be superior according to this criterion. For
cigenvalues in this latter class, however, the results of table 3 are a little
different. We notice here that the approximations are very close accord-
ing to this criterion. For eigenvalues with long cycles and weak damping
factors all tables suggest that there is little difference between the
approximations.

We also record in the tables the number of times DMAX > EMAX.
The meuasures DMAX and EMAX indicate the worst performance of
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the D-model and E-model approximations over all quarters for which
the approximations were computed. Thus, if an approximation performs
poorly for one or two quarters but well on the whole then its poor
performance will figure in this maximum deviation measure, whereas
it will be relatively less important in the mean RESS statistic.

Tables | and 2 show us that, for the first two series, the maximum
deviation measure gives results which are consistent with those of the
mean RESS criterion. For both series we can conclude is by far the more
reliable over a range of different eigenvalues and, when the system eigen-
value is large, it provides an approximation which is much better than
that of the D-model. These conclusions are supported by an inspection
of the figures in charts 1 and 2 where we graph the approximations and
the exogenous variable component for a representative selection of
eigenvalues.® In both charts we see that @7 is appreciable more biased
than @ when the system eigenvalue has a large modulus, On the other
hand, the approximations are very close when the system eigenvalue
has a small real part and a small imaginary part.

Turning now to the third series we notice from table 3 that according
to the maximum deviation-measure ®F performs rather worse on the
whole than #?. Looking at the figures in chart 3 we see the reason for
this: it is clear from these figures that for one particular quarter (the 24th)
@F seriously underestimates the exogenous variable component, whereas
for the remaining quarters its performance is satisfactory. Intuitively,
we might expect that the movement of the series is irregular 1n a region
of the 24th quarter (i.e., around the 312 consecutive observation of the
series) and this is confirmed by an inspection of figure 3 in the appendix,
where we have graphed the series.

As mentioned in the introduction to this paper, the theory developed
in [2] suggests that the performance of the E-model approximation
depends on the smoothness property of the exogenous series. One way
of measuring this property is to regress the series on a polynomial of time
and use the coefficient of determination, R?, from this regression as an
indicator of the smoothness of the series. We would expect a smooth
series to have a higher R? in a regression of this type than an irregular
series.

% A random integer between 1 and 30 was chosen and according to this number we

selected the eigenvalue whose real part corresponded to this point on the grid in the
strong damping and weak damping groups.
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Strong damping (Re A = —2.98) Weak damping {Re A = —~0.04}
Real eigenvalue
]
o)
&
Q
& g
=
[ < J
2 &
IS &
-1 1 [ T i
3.000 138,000 33.000 3.gee 12.00¢ 33.2e2
Complex eigenvalue: real parts
N
@ N
[S] & w0
B o & t
] Pr o -
ol _ g - =
Short cycle } '; Py
(tm A = 2.00) I c
T (2
©
1
5
=T T 1 -7 I 1
3.009 12. eee 33.02e 3.000 13, 6B 33. 002
=
g - o
Long cycle I~ t S
{im X\ =0.20) = g
=
©
g
T T ]
3.292 18. 90¢ 23.000
Complex eigenvalue: Aimaginary parts
Q
I
&
~n
Short cycle o
{Im A = 2.00) 2
& T
o
©+
3. eee 12.920 33 eee
Long cycle Al
(ImA = 0.20) L::/\" #°
< ] f
g :
3.220 12,0009 33.000 3. 209 18. 000 3.e2¢

Chart 1. Financial times industrial share price index. Number of quarters is measured
on the x-axis, ———~— denotes @,.
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Strong damping {Re A = —2.99}

Weak damping {(Re A = —~0.04)

Real eigenvalue

12. 020 33 eee
Complex eigenvalue: real parts
]
S}
IS
L
&
Short cycie w
(Im A =2.00) c
8 “
&4 1 =
3.e0¢ 12.00@ 33. 029
)
&
S
) ()
Long cycle A Py
{Im A = 0.20) /
M
& I t
N
S T 1
3.000 18. 000 33,000
Complex eigenvalue: imaginary parts
E
8 w
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Short cycle o
¥r
{fm A = 2.00)
<
S
S+ ] |
3.e00 12. 008 33.002
]
S
&~
Long cycle
Umn=0.20)

200

]
33. 90

T
12,000

B
3. 000

]
&
[
37
I
S
g
< T 1
3.29e 12,900 33.2ee
&
[N]
©
<
!
1
()
[
<7 T 1
3. 000 8. eee 33,229
[
&
[
2
[
&
[S]
<=1 t
3. eae 12. 20 33 eee
S .
& L
s
] w?
&
& —-
3.00¢ i12.ee 33.000

. T

3.009 12,202

1
33. 202

Chart 2. U.K. treasury bill rate. Number of quarters is measured on the x-axis, ———-

denotes @,.
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Strong damping {Re A = —2.99) Weak damping {Re \ = ~0.04}
Real eigenvalue
<@
<@
()
< D
L

=
2 S

- 1 |

3.eee 18.020¢ 33 eee 3.22¢ 13,980 3322

Complex eigenvalue: real parts

Short cycle
{lm A = 2.00)
[~
[
Long cycle ®
(fm A =0.20} <

[d2%]

- T 1 4
3.2 12.ee2 33 eee c.eee Te.eee 33022

Complex eigenvalue: imaginary parts

2
&
o
Short cycle "
(Im A = 2.00) D/
= Y €
§ #
il 1 1 P
3.eee 18,000 33.eee 3.eee 12, @@ 33 2o
o) %
& £ S
b #r =
Long cycle
(Im A =0.20)
b i
[ [ ot i
g . g | e
. T b < T i
3.eee 18.@ee 33 o2 3.eee 12,260 33.290

Chart 3. U.S. prime commercial paper rate. Number of quarters is measured on the
x-axis, ———~— denotes @,.
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Using the quarterly observations we computed the R? in the regression
Y, = dg +oagt +oaxt? + .+ agt® +ou, (16)
for each series and we detail the results below:

Series Smoothness coefficient (R?)
(i) Financial Times Share Index 0.9226
(i1} Treasury Bill Rate 0.8099

(iii) U.S. Prime Commercial Paper Rate 0.7457

According to the stated criterion the third series displays more irregulari-
ty than the others and this gives us a meaningful explanation of the
observed result that the E-model approximation does not perform quite
as well for this series as the others.

4. Monthly data with the time unit of a year

In this section we consider the following series, for which monthly
observations were recorded in the years indicated:

(iv) U.K. Index of Industrial Production: 1947-1971.

(v) U.K. Registered Unemployed: 1947-1971.

{vi) U.K.Import Price Index (Food): 1947-1971.

(vn) U.K. Import Price Index (Total): 1947-1971.

(viil) World Commodity Price Index (Metals): 1949-1972.
(ix) U.K. Exports (Visible Trade): 1947-1971.

(x) U.K.Imports (Visible Trade); 1947-1971.

As in section 3 we first construct a grid for the system eigenvalue A.
Since the time unit is now a year we can expect the range of realistic
eigenvalues to be somewhat greater. Thus, for the real part of A we specify
the following groups:

(a) Strong damping: We take 30 values of Re (1) in the interval [ —4.50,
—4.21] according to the scheme,
—4.50 + (k — 1)(0.01), k=1...,30

The damping period in this region is approximately 24 months.
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(b) Medium damping: We take 30 values of Re (1) in the interval [ —2.00,
—1.71] according to the scheme,

—2.00 + (k — 1)(0.01), k=1,...,30.

The damping period in this region is approximately 1 year.
(c) Weak damping: We take 30 values of Re () in the interval [ —0.30,
—0.01] according to the scheme,

—030 + (k — 1)(001), k=1,...,30.

The damping period in this region is between 3 and 100 years.
We specify the following groups” for the imaginary part of A:

(a) Short cycle: Im (1) = 3.00. The cycle period is approximately 2 years.

(b} Medium cycle: Im(4) = 0.80. The cycle period is approximately
& years.

(c) Longcycle:Im () = 0.25. The cycle period is approximately 25 years.

Real eigenvalues were considered also and these were classified into the
same groups as those for the real parts in the complex case above.

As in section 3, we computed the exogenous variable integral @, by
numerical integration taking account of the intermediate montly obser-
vations, but used only annual observations to compute the approxima-
tions ¢ and &F. A methodological problem arises in the treatment
of series (ix) and (x) because instantaneous observations of exports and
imports are not available. In another paper [4], we have shown that
when we have a flow variable model the exact discrete model can be
integrated over an appropriate time interval and estimated with flow
data in the resulting form. If we carry out this procedure, then the
exogenous variable component (3) becomes

h th—s
ge“{j;_h_. (1) dr} ds. (17)

Instead of calculating (3), therefore, we calculate (17). We can do this
numerically because we have monthly observations of the series and by

7 Although we do not record the results here, 6 groups were actually used in the com-
putations according to the scheme 3.00 + (& — 1)(—0.55), k = 1, ..., 6.
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temporal aggregation we can obtain intermediate observations of the
quantity in braces in the integrand of (17). The approximations ®? and
&F are then approximations to (17) and are computed from annual totals
of the series.

For each series (iv) to (x) we calculated the summary statistics described
in section 3 and these are presented in tables 4-10. We see from these
tables that the E-model approximation performs considerably better
in terms of the mean RESS statistic than the D-model approximation
when the eigenvalue A has large real and imaginary parts. This result
accords well with what we have observed for the weekly series, and it is
supported by an inspection of charts 4-10 where we graph the integral @,
and the approximations @ and &F for a random selection of eigenvalues
(obtained in the same way® as in section 3). We notice in these charts
that when we have strong damping and short cycles @” exhibits uni-
formly more bias than ®£.

For the case of medium damping and medium cycles we see from
tables 4-10 that the E-model approximation still has a mean RESS
which is much smaller on the whole than that of the D-model approxi-
mation. The only series for which the D-model approximation comes
close to performing as well as the E-model approximation for eigen-
values in this category is the World Metals Price Index [series (viti),
table 8].

When the system eigenvalues have small real and imaginary parts
we observe in all tables that the mean RESS for the different approxima-
tions are quite close. The figures in charts 4-10 bear out this result and
we notice that for the weak damping, long-cycle category the graphs
of @,, &P and &F are frequently so close that they are difficult to dis-
tinguish.

In tables 4-10 we record also the maximum deviation statistic. For
all series but the Metals Index (table &), the E-model approximation
scores consistently better than the D-model approximation according
to this criterion. In the corner of table 8 corresponding to medium-
long cycles and medium-weak damping we notice that EM AX is never
exceeded by DM AX. This result suggests that the E-model approxima-
tion may be performing badly for some years. An inspection of the figures
in chart 8 supports this conjecture. In the figures, we see that ¢ displays

& C.f. footnote 6.
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Strong damping {Re A = —4.45) Weak damping (Re A = —0.25}
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Chart 4. U.K. index of industrial production. ~——=— denotes &,.
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Strong damping {Re A = —4.45)

Weak damping {Re A = —0.25)
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Chart 5. U.K. registered unemployed. ———— denotes &,.
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Strong damping {Re A = —4.45)

Weak damping (Re A = —0.25}
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Chart 6. U.K. import price index (food). ———— denotes &,.
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Strong damping (Re A = —4.45)

Weak damping {Re d = ~0.25)

Real eigenvalue
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Chart 7. U.K. import price index (total). ~——— denotes @,.
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Strong damping (Re A = —4.45) Weak damping (Re A = —0.25)
Real eigenvalue
S
] )
o &
. ]
3 Py o
s :
E
= %
< [\
S [\
S+ T &4 T
) T
1951.00e 1964,200 1951.220 1764.200
Complex eigenvalue: real parts
Q
& W
[N D
' [
@ 5
0 -
=]
Short cycle o =]
(Im A= 3.00) A x
&
]
(W)
&
&
Long cycle
{lm A =10.25) 3
*
Complex eigenvalue: imaginary parts
®
&
()
©
<
o
=
Short cycle x
(Im A= 3.00) ©
[
O]
. ‘"——]—_‘—“
1991 .009 1966, 020
S
9]
S
<
Long cycle
{ImA=0.25)
2
& 5
S - /_z_‘_
B - 1 . ‘_‘_"*""
1951.080 1966.0€2 1951200 1964, 0QC

Chart 8. World commodity price index (metals). ———— denotes &,.



206

P. C. B. Phillips

Strong damping (Re A = —4.45}

Real eigenvalue

1964, 002

1949, 00

Complex eigenvalue: real parts

S
[N)
«
Short cycle =38
{Im A = 3.00) g
x
&
8
®© .
1947 622 1944, 020
Q
[
Long cycle 8-
(Im A =0.25) 2
x
Iy
&
ot
1242.002 1944,

Complex eigenvalue: imaginary parts

I~
b
>
Short cycle §,3
(Im A= 3.00) =
X
&
[
[ 1 B
1964.200

1240, goe

Long cycle
{Im A =0.25)

17464, Q@0

12349 . Qe

Weak damping (Re A = —0.25)

x1000
3. 00

=
&
Y

1949.082 19464, 000

x1000

1947, a0

1964, COQ
)
IS
]
o]
S |
=
x
“
&
[} R
1RA9.000 1964, 020@
& ef
w
fe=)
(=
<
<
©
&
1942, 200 1764, 00
= {3
2 #

x100

e
1964, Q@

1919, eee

Chart 9. U.K. exports (visible trade). ————denotes @,.



Exogenous variable component

207

Strong damping {Re A = —4.45)

Weak damping {Re A = —0.25)

Real eigenvalue

x1000

4,000

Y
~m

8
S

- T
1249.000 1964.000

Complex eigenvalue: real parts

Short cycle
{ImA=3.00)

x 1000

L

Long cycle
{tmA=0.25)

x1000

S
S
o]
<

S ¢

© :
1949.000 1964 000

S

S

S

N j¢;;:::::ﬁ:j£?
S
[\V]

B T
1949.000 1964,000

Complex eigenvalue: imaginary parts

Short cycle
{Im A =3.00)

%1000

Long cycle
(Im X =0.25)

x100

20 1.0

[
& o
S ¥,

[51%15]

-
1249.20€ 1964.2€2

S

S

<1 T
1249, 00 1964, 200

S
ol
S
o @
=]
=]
%
S
®
o 1
1949, 000 1964.000
S
®
®
P D
g #
2
x
&
8 M\pf
. T
1949.082 1964.000
S
8
-
=]
=]
=]
*
®
®
s r
147,000 1764.000
& ¥t
<
o
(=]
(=]
* o
%
&
&
®- i T
1747.0200 1954, 000
S
© o
o
(=]
e
x (p?
<
&
© :
1949.00¢ 1964, 000

Chart 10. U.K. imports (visible trade). ———~ denotes @,.



208 P. C. B. Phillips

a consistent bias for most eigenvalues, but @ significantly under-
estimates @, in an early year (1952), while in Jater years it appears to
provide a satisfactory approximation. Turning to the data graphs given
in the appendix we note that the Metals series (figure §) displays definite
irregularities. It is interesting that the irregularities sometimes disrupt
@F more than @ as in the case of the early years. This must be caused
by fact that ®F apportions different weights to the current and lagged
observations whereas @7 does not. Thus, if the discrete (in the present
case, annual) observations are not representative of the series in a parti-
cular interval and this happens to be accentuated by the weighting
scheme in ®F, then the approximation @F will be more severely disrupted
than @ because @ depends on a simple average of the observations
with equal weights.

Since the E-model approximation did not perform as well in the case
of the metals series as for the other monthly series we decided to compute
the smoothness coefficient (developed in section 3) for each series by
running a regression of the form (16). The results are given below:

Series Smoothness coefficient (R?)
{1v) Index of Industrial Production 0.9890
(v) Registered Unemployed 0.7755
(vi) Import Price Index (Food) 0.9619
(vii) Import Price Index (Total) 0.9481
{viii) World Price Index (Metals) 0.8516
(ix) Exports 0.9947

(x) Imports 0.9862

Two series, Registered Unemployed and the Metals Index, have smooth-
ness coefficients which are considerably smaller than those of the
remaining series. If we accept that both these series display irregularities,
then this would explain the performance of the E-model approximation
in the case of Metals. But we are led to question why the E-model is
apparently so much better than the D-model approximation for the
Unemployment series. One answer that is meaningful in the context
of our theory is that much of the apparent irregularity in the Unemploy-
ment series is caused by a seasonal component. While this seasonal
component certainly affects, in this case, the size of the R? in the regres-
sion (16), 1t 1s less important as far as the performance of the approxima-
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tions are concerned because the seasonal cycle is itself reasonably
smooth (if not completely regular as in the case of the Industrial Produc-
tion Index). The data graphs in the appendix scem to support this
hypothesis.

5. Conclusions and some further computations

The results of sections 3 and 4 indicate that for most of the economic
series we have considered in this paper the E-model gives a more reliable
approximation than the D-model. When the system eigenvalue has large
real and imaginary parts, the relatively poor performance of the D-model
approximation is particularly evident and this confirms the theory of
section 2. One of our conclusions, therefore, is that the theory we have
developed on the assumption that the exogenous series arc reasonably
smooth does seem to provide a useful guide to the relative performance
of the approximations in practical work with observed series.

For two economic series, we found that the E-model approximation
did not perform as well as our theory might suggest. Using an indicator
of the smoothness of a series, we found that these particular series appear-
ed to more irregular on the whole than the others. This result is in
agreement with the asymptotic theory developed in [2] where it was
established that the order of magnitude of the asymptotic bias of estima-
tors derived from the E-model depends on the smoothness properties
of the exogenous series.

To make the results of this paper more useful to empirical researchers
in this area, we must make certain recommendations. Qur first recom-
mendation is that, in general, the E-model is worth estimating because
it 1s likely to be more reliable than the D-model, particularly when
there 1s a trade cycle mechanism in our model involving moderate to
strong damping factors.

Our second recommendation is that a researcher who is doubtful
whether his exogenous series are very smooth should compute the
smoothness coefficient developed in section 3 and assess whether its
value implies that the E-model may not perform satisfactorily. To help
in this assessment, we have carried out some further computations.

From the statistics given m tables 1-10 we calculated, for each group
of eigenvalues, the ratio
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IS oy - or2l (315 (o, - onpl (18
jgl rZZS [ o Y } i=1r (1=3 U Y ’ )
where the subscript j refers to the eigenvalue 4; in a particular group.
In (18) the vertical bars indicate that we are taking the moduli of the
deviations @,; — @ and @,; — $P, so that in computing (18) the real
and imaginary parts of these deviations are considered together. For
each table, 12 such ratios were calculated corresponding to the different
eigenvalue groups, and we used the geometric mean of these 12 ratios
as an indicator of the relative performance of the E-model and D-model
approximations for this series. We denote this geometric mean by G,
where I (I = 1,..., 10) refers to the series.

To investigate the relationship between the relative performance of
the approximations and the smoothness of the series that is suggested
by our theory, we decided to carry out a simple linear regression of
{G;:1=1,...,10} on the smoothness coefficients which we denote by
H, (I=1,...,10). This regression resulted in the relationship

G, = 23690 — 23818 H,, R?=0.7379, (19)
(0.4531)  (0.5018)

where we give the estimated standard errors in brackets.

We notice that the coefficient of H, in (19) is significantly less than
zero which is consistent with the hypothesis our theory favours, and we
have explained 74 %, of the variation in G, by this regression. We can use
(19) to compute a critical value of H,, below which we cannot recommend
the use of the E-model for estimation purposes. This critical value is

H, = 0.5748, (20)

for, when the smoothness coefficient H, is less than this value, then
according to (19) we can expect the ratio (18) to be greater than unity.
Thus, if an empirical investigator finds that his exogenous series have
a smoothness coefficient which is less than (20) then our results indicate
that, in this case, it may not be worth while estimating the E-model.

We can put this recommendation to a simple test. As we remarked
in section 1, a finite sample experiment® has already been carried out
with artificial data and the E-model estimates in this experiment turned

® See[3].
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out to be somewhat disappointing. To test whether this outcome might
have been forecast by the above results, we computed the smoothness
coefficients for the two exogenous series used in this sampling experiment.
We found the following:

Series Smoothness coefficient (R?)
Imports (Artificial Data) 0.2351

Exports (Artificial Data) 0.4187

The smoothness coefficients for both series are well below the lower
bound (20) we have prescribed. Thus, our recommendation that the
E-model may not be worth estimating when the smoothness coefficient
is below (20) appears to be justified in this case.

Appendix

Figures 1-10. Units measured on the x-axis are weeks in the case of weekly data, months
in the case of monthly data.
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