CHAPTER 7

The Estimation of Linear Stochastic Differential Equations
with Exogenous Variables*

P.C. B. PHILLIPS

1. Introduction

When exogenous variables occur in a system of stochastic differential
equations the corresponding discrete time model no longer has a simple
autoregressive form. In fact, the exogenous variable component in the
exact discrete model depends on a continuous time record of the exo-
genous variables. Such a record is not usually available, so that some
sort of approximation is necessary in most cases before the structural
parameters of the system can be estimated with discrete data. In the
present paper an approximate model is constructed and the asymptotic
properties of quasi-maximum likelihood (QML) estimators derived
from this model are investigated. An alternative procedure which uses
instrumental variables and should be uscful in particular cases is also
discussed.

The methodological approach we adopt in this paper is to develop an
asymptotic theory on the hypothesis that the variables in the model are
observed at equispaced intervals in time measured by some positive
real number h. If N is the number of unit time intervals over which we
have observations and T is the total number of observations available,
then N = hT. As N increases we can expect our sampling interval h
to decrease so that we have the functional dependence h = h(N); but it is
very difficult to say anything more precise about this function since the
function may well differ according to the time series under consideration.

* This paper is based on chapter 4 of my thesis [3] and represents an extended treat-
ment of a problem that was considered in section 3 of [4]. I am very grateful to my thesis
adviser Professor J. D. Sargan for many comments and suggestions on this work and to
the referees of Econometrica for their helpful reports on an earlier version of [4].
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For many economic series, h remains fixed for a reasonable number of
unit time periods, so that T can be fairly large before h changes and the
series 18 observed more frequently. For instance, the time unit is taken
to be a year and h = 45, then we may have several hundred post-war
observations of a series that is available monthly but, as yet, not more
frequently. Thus, the line of argument we take is to consider first an
asymptotic theory as T becomes infinitely large for fixed h. We then
turn our attention to what happens to the asymptotic bias and limiting
distribution of the estimators we arc considering as h tends to zero.
This theory can tell us whether our estimators are likely to be satisfactory
when the number of observations is large and the sampling interval is
small. Since Sargan [6] has developed a similar theory for estimators
based on the discrete approximation, the present theory can also help
ns to discriminate between the different procedures on the basis of
asymptotic properties.’

2. The structural system and the corresponding discrete time model

We shall consider the model
Dy(t) = Ay(t) + Bz(t) + (1), (1)

where the coefficient matrices 4 and B have dimensions n x n and
n x m, respectively, and both have elements which belong to the real
number field. The characteristic roots of 4 are taken to be distinct and
to lie in the Ieft half plane. The vectors of endogenous variables y(t) and
exogenous variables z(t) are observable at discrete points in time ¢, and
we assume that the elements of z(t) are non-random and have continuous
derivatives to the third order. D is the mean square differential operator

! It would be possible, no doubt, to construct an asymptotic theory in a different way.
We could, for instance, consider first the effect of letting & and T approach their limits
while N remains fixed, so that our data becomes closer to a continuous time record in 2
given time period; and then we could allow N to tend to infinity. But this approach tends
to contradict the manner in which economic variables are observed. It would be much
more complicated to construct a theory which allowed & = A(N) and T = T(N) to con-
verge to their respective limits as N increased indefinitely. Although this latter situation
comes closer to the facts, it is, as we have indicated above, very difficult to be speaific
about the functional dependence A(N) and at the same time cxpect this function to be
realistic enough to apply to all variables in the model.
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d/dt, and {(t) is a vector of pure noise disturbances whose spectral
density matrix is the positive definitec matrix /272

Some conditions on the cxogenous variables are essential if two later
assumptions® we will makc in order to develop an asymptotic theory
are to be satisfied. The assumption that the elements of z(¢) have con-
tinuous derivatives to the third order is quite strong especially in view
of the fact that the mean square derivative of y(t) does not exist. But this
assumption is not necessary and is made here only to help us develop
an approximate model for cstimation purposes and obtain some intuitive
idea of the specification error involved in this model. Various weaker
assumptions that would be sufficient for our purposes are outlined in
appendix A.

From the solution of (1) we derive the system

y(£) = exp (hA)y(t — h) + } exp (sA)Bz(t — s)ds + &(1), (2)
0

where &(1) = [ exp (s4)(t — s)ds, and h is a positive real number
which represents the time interval between successive observations of the
variables y and z By defining y, = y(rh) and & = &(rh) for integral r,
we may write (2) as

h
Ve = exp (hA)y,_, + | exp (sA)Bz(th — s)ds + &, (3)
0

To estimate the parameters of A and B from this mode!l when only
discrete observations of the variables are available we must, in general,
approximate the intcgral involving the exogenous variables. The special
case occurs when z(t) is a simple integrable function of time such as a
polynomial, trigonometric or cxponential function; we can then integrate
out in (3) to obtain a model that can be estimated dircctly. We now pro-
ceed to consider the general case in which an approximation is necessary.

* The mathematical difficulties involved in treating a system such as (1) are discussed
elsewhere ([ 1], [4], [8]). Itis implicitly assumed that no identities occur in (1). If identities
do occur then the results of section 2 of {4] are relevant, and the procedure we are about
to consider remains viable so long as the disturbances in the discrete time model have a
non-singular distribution.

3 Assumptions 1 and 2 in section 5.
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3. An approximate model

Expanding z{th — s) in a Taylor series about the value s = 0 and using
the notation z, = z(rh) for integral r, we obtain

Z(th — s5) = z, — sz 4 $s2212/21 — $3:3(0)/3),

where th — s < 7 < th. One way of approximating z in the interval
(th — h. th) would be to truncate this expansion at the third term and
usc the approximations

7Y~ (z, = z,1)/h and Zt(zj ~z, =2z, + 31_2)/]12.

But this approximation is fairly crude and a better approximation is
obtained if we replace z{th — s5) by a quadratic in s and express the
coefficients of this quadratic in terms of the three consecutive observa-
tions z,_,, z,_, and z.* This method is equivalent to using a form of
numerical diffcrentiation more refined than that just mentioned. We
approximate z(th — s) by a three-point Lagrange interpolation formula
and then differentiate once to obtain

2V~ (z,_, — 4z,_, + 3z,)/2h.
and twice to obtain
2~ (z, = 22,1 + z,_o)h*
Thus, we can write the approximation as
Hth —s) =2z, —slz,_, — 4z,_, + 3z,)/2h
+ 5%z, — 2z, + 2, ,)/2h" (4)

The error involved in using this approximation is well-known, and we
have

Y(th — s) = z(th — s) — Z(th — )
= —s(—s + h)(—s + 2h):=20)/3", (5)

where 6, which us an unknown function of s, lies in the interval (th — 2h,
th).
As an approximation to (3) we may now construct the model

4 Professor J. D. Sargan suggested this approximation.
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h
v = exp (hA)y,_y + [exp (sA)Bi(th — s)ds + 7, (6)
0

where, for extimation purposcs, it may be assumed that #, is a vector
of serially independent random variables with zero means and non-
singular covariance matrix. From (4) and (6) we obtain

ye=Ewv_, + Eyz, + Ezz,_| + Eqz,_, + 1, (7
where the coefficient matrices are
E, = exp(hA),
Ey = h{{3(hA)™2 + (hA)"*} exp (hA) — (hA) ™"
— 3(hd)"?/2 — (hA)"?]B,
E; = h[{{h4)™' — 2(hA) "} exp(hA) + 2(hA)"* + 2(hA4)*]B,
Eq = h[{ —4hA) % + (hA)"*} exp(hd) — 3(hA)"* — (hA)"*]B.

Clearly, (7) can be used to estimate the parameters of A and B from
the discrete sample data {y, z:t =1,2,..., T}. On the other hand,
the estimators obtained in this way will not be consistent because the
model is not exact. But we can expect the misspecification bias to be
small if 2(th — s) is a good approximation to z(th — s) in the interval
(0, h); and the smaller the time interval h the better the approximation
is likely to be. More preciscly, for s in the interval (0, A) it follows from (5)
that y(th — 5) is of O(h®) as h tends to zero. Moreover, the condition
under which the two models (3) and (7) are equivalent is contained in the
relationship

no="¢ + }jexp (sA)By(th — s)ds, (8)
0

which reduces to
N = ér + O(h4)a

as long as the elements of exp (s4) and B remain bounded as 4 tends to
zero. This requirement will be discussed later. For the moment, it is
sufficient to remark that the bias involved in using the approximate
model (7) for estimation purposes and, thus, treating #, as a random
disturbance with zero mean seems to be of O(h*). We might add that (7)



140 P. C. B. Philiips

has the advantage of being exact when the elements of z(t) are polyno-
mials in ¢ of degrec at most two. This follows from the fundamental
property of the Lagrange interpolation formula.

4. The use of intermediate observations

Interpolation formulac of higher degree in s than (4) could be used to
approximate z{th — s), but this would involve a further reduction of the
effective sample size® and has the undesirable feature of greatly increas-
ing the computational complexity of the approximate model used in
the estimation of parameters. However, in some case, intermediate
observations of the exogenous variables may be available; and the extra
data can then be used without losing any degrees of frecdom.
Suppose, for instance, that k additional equispaced observations of z(i)
are available in each interval (th — h, th)y for t = 2,..., T. A suitable
polynormial that can now be used to approximate z(th — s) is

. k2 kKt2th — s — q
Hth—s)= Y =) |] >4

j=0 i=0 (Ij — d;
i#j

)

where a; = th — hik + 2 — i)/(k + 1). The error involved in using (9) is

Yrl(th — s) = z(th — s) — Z(th — )

1 ke k+2 -1\ .
“wa ol (—S ¥ ’T:T) 0,

i=0

where th — (k + 2)h/(k + 1) < 8 < th and assuming, of course, that the
derivative of z of order k + 3 cxists cverywhere in the appropriate
interval. Since 0 < s < h it follows that ¥(th — s) is of O(h**3). When
k = 0, (9) reduces to the casc of the quadratic approximation considered
above.

We could now proceed to derive the approximate model based on (6)
and (9) but this is merely a routine exercise. The specification crror in
this model, under the same conditions as before, will be of O(h* ™).

S One degree of freedom has already been lost by the use of a quadratic approximation.
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It should be clear, however, that it will be much more expensive com-
putationally to cstimate the approximate model when k > 1, and this
must be taken into account before it is decided to make use of additional
data in this way. An obvious alternative is to use a simple Newton-Cotes
formula like Simpson’s rule, for which we would require k to be at
least 3. The error involved in this approximation will be of O(k®) as h
tends to zero, which is not as good as that of the polynomial above.
But we can expect the approximate model to be considerably simpler
and this is a great computational advantage. Moreover, when k = 3
and Simpson’s rule 1s used, the approximate model will be exact if z(r)
is a polynomial of degrec at most 2. In practice, therefore, this may
provide a good procedure when cxtra observations of the exogenous
variables are available.

We now return to the approximate model (7) developed in section 3
and investigate the effect of the specification error implicit in this model
in terms of the asymptotic bias of typical econometric estimators.

5. The asymprotic bias of the QML estimators

Before proceeding we must be specific about the parameters to be
estimated. In general, the clements of 4 and B in (1) are simple functions
of a smaller set of parameters which we can represent by the p-vector d.
If we wish to emphasize this dependence we may write A(5), B(d) and,
stmilarly, E,(d), i = 1, ..., 4, so that (7) can be rewritten

ye = GO)x, + 1., (10)
where G = [E, Byt Ey- Ey] and x; = (- 15 20, Zm g 20-27)
The QML estimator of § is obtained by numerically minimising
logdet (Y'Y — GX'Y — YXG + GX'XG'), (11)

where Y’ = [y1, ¥5.. .. ¥r) and X' =[x, x,,..., X ] Some elements
of 6 may be just non-zero elements of A and B, others may be more
involved functions of these elements. Nevertheless, it 1s often convenient
to minimise (11) with respect to the non-zero clements® of 4 and B

¢ Strictly, we mecan those elements of 4 and B which are unknown a priort; for some
clements of 4 and B may be known to have constant values other than zero.
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first and then solve to find the corresponding value of ¢ (given that the
transformation is one to one, as it frequently will be). This being the case,
we may as well write G(A4, B) where it is understood that the functional
dependence is on the non-zero elements of A and B. Similarly, by the
estimators 4 and B we mean the matrices with the estimators of the
non-zero elements of A4 and B in their appropriate positions and zeros
elsewhere. This convention will be rctained in the rest of the paper.
We rcturn to a remark made earlier about the requirement that
exp (s4) and B remain bounded as h tends to zero. In general. the
clements of A and B depend not only on the units in whicl the variables
are measured but also on the unit of time. Since a typical element of 4
or B involves the product of a response parameter, which is proportional
to the unit of time, and a simple function of other parameters, some of
which may be invariant with respect to the unit of time. we may anticipate
that many elements of 4 and B become smaller or at least remain
constant as the time unit decreases. This is not to say that, for any given
time unit, the spced of response parameters must be small. In fact, if the
model is at all disaggregated we may very well expect some equations
to have large response parameters, representing fast rates of reaction.
However, i1t is important to distinguish between the unit of time and
the time interval between observations, which we have denoted by h.
This distinction is often blurred by the convenient practice of using h
as the unit of time when we construct a model. If we do take h to be
the unit of time then, as we have suggested, many elements of 4 and B
will decrcase with h. But the possibility of some elements of 4 and B
becoming progressively larger as k decreases is not completely ruled out.”
Since we have assumed that A is stable, it is rcasonable to conclude
that even in this case exp (sA4) is bounded as h decreases; but the conclu-
sion does not follow for B. Consequently, (8) does not lead to the simple
specification error of O(k?*) for the model (7). Another important conse-
quence of identifying h with the time unit is that those elements of y and z
which are proportional to the unit of time (such as flows) tend to zero
as the time unit decreases; this would prevent a later assurnption8
being satisficd. Finally, it is worth mentioning that the convergence of &

7 Notice that if all the variables of a linear model have been the same time dimension,
then the elements of 4 and B will certainly decrease with h. However, most macro-econo-
mic models anyway involve variables whose time dimensions are not all the same.

% Assumption 1.
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to zero is not rigorously defined if h itself is taken to be the unit of time.

We now assume, therefore, that the time unit remains fixed as h,
the interval between observations, decreases to zero. It follows that A,
B and exp (s4) where s lies in the interval (0, i) are bounded as h tends
to zero, so that the specification error of the model (7) is of O(h*). This
result compares favourably with the specification error of the discrete
approximation to (1) which is known® to be of O(h?).

We define

Yo =W yr-1d
Z =1z, -, 2¢),

Z'_ =z, 270-1)
Z_y=lz_y . zpo0)

p_[0o 0 0
“lo /s 13 L3

Y_, Y., Y., Z*
AL S AV AN

so that
JXXJ] = [

where Z* = {Z + Z_, + Z_,). The following additional assumptions
are now made in order that we may find the asymptotic bias of the QML
estimators of A and B. They are also sufficient to ensure that these
estimators have a limiting non-singular distribution, which will be
discussed later.

Assumption 1
The matrices

M M YY Y'X
M= 11 12| - opm T1 ,
[M21 M,, I;—I»z} XY XX

and M = lim,_,, M both exist. M,, is assumed to be positive definite
for h > 0 and the limit matrix lim,_ o J'M,,J = J'M,,J is also assumed
to be positive definite.

® See Sargan [6].
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Assumption 2
(1) The elements of z(t) are boundcd uniformly in ¢,
(i)  The matrix plimp_  T7' 57T iy, Where ¢, = Jaexp (sA)
By(th — 5)ds, exists for all integral r and when F=0it is of
O(h%) as h tends to zcro
(i)  The matrix limg. (=1 .b_, also exists for all integral »
and when r = 0 jt is at most of O(h®).

From the last part of assumption 2 we obtain by Cauchy’s Incquality

[:hm T ! Z ¢ll¢jf rt
= T]m " 1! Z ¢lt¢_}t r
T T %
< limsup 7! {Z Z b ,}
T = t=
<

{Iim sup[T‘1 > c/){’;]
T—w =1

, T + [r‘ 1 Tl B
I —
<limsup| L il
T T %
{lim T°U Y @2 lim T-1 > d)f,} .

Tow =1 Tow =

Il

Hence, lim,, 71 i1 dbi_, is bounded uniformly in r and of
O(h®) as h tends to zero

Assumption 3
" The elements of the disturbance &, in the model (3) have finite moments
up to the fourth order.

Assumption 4

The matrix function G = G(A4, B) does not have g singularity at the
truc values 4° and B°. This assumption requires, in particular, that the
matrix of derivatives of G with respect to the non- -zero elements of A
and B has full rank at the point defined by (4° B9).



Estimation of Differential Equations 145

Assumption 5

The pair (A% BY lies in a compact set  in n(n + m)-dimensional
Euclidean space. Moreover, the a priori restrictions on the model (4.1)
confine (4, B) to ¢ and are sufficient to ensure that there is in i a unique
solution, A, to the matrix equation exp (hA4) = exp (hA®) for allh > 0.

The conditions on the model implies by assumptions 1 and 2 are not
obvious and it is worthwhile to consider how they can be derived from
more fundamental hypotheses about the components of the model,
particularly the exogenous variables. However, we leave this discussion
to appendix A, and now derive explicitly the asymptotic bias of estima-
tors derived from (10). We look first at the unrestricted least squares
estimator of G and then consider the QML estimators of 4 and B.

We start by defining G* = M,M;,! and G° = G(A° B®). Since

(G* — GO )M ,, = M, — G°M,,, (12)
and
. T . T ’
M, =G°M,, + pimT™" } &x; + plim T7* ZI ¢.x, (13)
T =1 T t=

it follows from assumption 2 that

(G* — G°)M,, = O(h*). (14)
Hence, from the normal properties of order relations,'® we have

(G* — GOYM3,(G* — G°) = O(h®). (15
We will need the following lemma.
Lemma

If h is a non-negative scalar and the square matrix 4 = A(h) of order n

is positive definite for all & > 0 and lim,_,, A(h) = A exists and is posi-

tive semi-definite, then given a small positive quantity & satisfying
0 < & < 1, there exists a positive real number A, such that the matrix

AR — (1 — e)4
is positive semi-definite for all h < k.

19 In particular, if k) = O(h") and g(h) = O(*) then fh) g(h) = O(A"**%) and, if
r=s, fth) + g(h) = O(h").



146 P. C. B. Phillips
Proof ~
We denote by P and P the orthogonal matrices for which
PAP = A = diag(4,,..., 4,),
and
PAP = A = diag(4,,...,2,).
We can now write A(h) — (1 — ¢)4 as
PA* AP —(1 —e)PAP =PAY I —(1 —e) A~ *P'PAP PA AP,
and since
P=P+R,
where lim,_, ,R = 0, we have
Ah) - (1 — A =L{I - (1 —A ¥4} L + S,
where L = PA*, and
S=—(1—-¢P{RPA+ APR + RPAPR}P.
Clearly, the elements of S tend to zero with h so the eigenvalues of

A(h) — (1 — ¢)4 can be written as

A
;L—l—(1~s)4 + si{h), i=1,...,n

4

where s,(h) = o(h) for all i.1!
If 7, > 0 we select A, such that

|2 — & < 3ed,.
for all h < h;. It follows readily that

£
> '2“+_‘+5(h)

whencver & < h;. We now select h* such that for h < h¥,

A <

2+s
Thus, y; > 0 for h < min; {h;, h}}.

'! We use the order symbol o in the usual sense.
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If 1; = 0 we have
=1+ sih),
and selecting h¥* such that
Is,(b)] < 1,

for h < h¥* we have i; > 0 when h is small enough. The lemma is proved
with hy, = min, ;{h;, h¥, BF*].

i? i

Theorem I

Under the additional assumptions 1, 2(i) and 2(ii), the probability limit
G* = [E* - E%¥ ' E% ' Ef] of the unrestricted least squares estimator of
the coefficient matrix G in the model (10) satisfies

4
E* —E?=0(h* and Y (E¥ — E% =O(h*).
i=2

Proof
Given ¢ > 0, it follows from the above lemma that the matrix

M3, — (1 — gM,
is positive semi-definite for small enough . We consider the matrix
(G* — GOM3,(G* — G°),
and denote the 'th row of G* — G° by ¢. We have
eM3,e;, < l—l_—ge’iMizei = O(h®)
by (15). By the Cauchy inequality
le;]\_zizej] = {(egﬁgz@i) (@}Mgzej)}%,
and thus
(G* — GO)M2,(G* — G°) = O(h®). (16)
We now set D = (G* — G°)M ,, so that from (16) we have
d3 < DD, = O(h®),
where D; is the i'th row of D and d;; the (i, j)th element of D. It follows that
(G* — GOM,, = O(h*). (17
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In fact, we can write M,, as

Sl‘l Slz S12 S12
]\—/I — S21 S22 S22 SZZ — [Sll i’®S12:l
22 S21 S22 S22 SZZ i®S21 ii'®822 |
SZI S22 522 S22

where S, = lim,_oM,,, S, = lim,_ o {plim,, T 'Y  Z} §, =
St Syp = limy. {limy,, T7'Z'Z} and 7 is the sum vector (1,1, 1).
To verify this expression for M ,, we show that, for instance,

. zz . ZZ_,
im0 1
and
Y. Z Y., Z_
plim —== — plim —~2=L = O(h). (19)
T T—w T

If we assume that the first derivatives of the elements of z(1) are uniformly
bounded,!? (18) is straightforward because

T T
lim 77! ) zyz,— Iim T7 ) z,2,
Tm t; it” jt o 1;1 it“ji—1

T
= lim 7YY 2z, — z,-,_l)l

T=w =1

.
Slimsup T7' Y |z, | 2490) |, th — h < 0 < th,
T+ t=1
which, by assumption 2, is of O(h). To verify (19) we first write y(th) =
|& exp (sA)Bz(th — s)ds + & exp (sA){(th — s) ds, so that
. Y. Z ) L=
phm*T~ = }lm T Y { exp (sA)Bz(th — h — s)z(th) ds

'I‘ e
T =10

T
+plim T™' Y [exp(sA)(th — h — s)z(th) ds
0]

T—w =1

D~

Oty 8

exp (sA4)B lim {T"‘

T

z(th — h — s)z(th)’} ds.

n

1

12 If z(1) were a stationary ergodic stochastic process it would be sufficient to assume
that its autocovariance matrix be differentiable except at the origin where only the left
and right derivatives need to exist [c.f., assumption B'(1i) in appendix A].
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Taking the norm | D|| of a matrix D = [(d,))] to be the sum Y, ;|d, |, we
have

;O exp(sA4)B iim [Tﬂ i Z(th—h—s){ z(th)—z(th —h)}} ds

=1
}ds,

=3} T _
<h g) exp(s4)|| | B THP; T'l{t; | z(th—h—s)| || 2(0) |
th —h <8 < th,

which is also of O(h) as h tends to zero.
Returning to (17) we deduce that

L& s, i®s
E* — E9: E¥ — E° 1 121 = o),
[l I.i;:)'(z 1)—|:S21 i,®S22 ( )

and postmultiplying this system by J we find that

. .
[EE" — EY: ) (EF — E?) |J'My,J = O(hY),

i=2 B

where

— S S
J’Mzzjz[ 11 12:|'
S21 S22

The theorem is now proved because, by assumption 1, J'M,,J is positive
definite.

We now turn to the QML estimators of 4 and B in the model (10) and
prove the following result.

Theorem 2
Under the additional assumptions 1, 2 and 5, the limits in probability
A and B of the QML estimators of 4% and B° in the model (10) satisfy

A—-A°=0(k) and B - B°= 0%
Proof
From equations (12) and (13) we obtain

(G* — GO)Mzz(G* - GO)’ = M¢2Mz—21M2¢,
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where M, = plim;,_, T7',¢.x and M;, = M},,. We now introduce
the non-singular matrix K for which

K'M,,K = 1. (20)

The existence of K is assured by assumption 1 for positive h and we can,
in particular, write K as

K =TA,

where T is the orthogonal matrix which diagonalises M,, and A% s
the inverse of the matrix whose diagonal elements are the square roots
of the eigenvalues of M,,. Clearly, the elements of K depend on A, but
for positive & we have

(G* — GO)M,,(G* — GO = M, KK'M,,

_ o J(eXN (x
= pim (4 (X))

where ¢’ = [¢,... ., ér] We denote the i'th row of ¢ by ¢;, and then
by the Cauchy inequality we have

RN N
(pmCA (O o2

(22)

and

for i # j. Taking the limits in probability of (21) and (22) we find from (20)
that

[MWKK’MM]ﬁ =< (n + 3m) plim (@)

T—w

= (n+ 3m) {ph’m (%) plim (%il)}i
T—x T

and

! [M¢2KK’M2¢:]£j
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Hence, it follows from assumption 2(iii) that
(G* — GO)M,,(G* — G = O(K®). (23)

We now define G = G(4,B), H=[I: ~G], A =[1: =G|, H* = [I: — G"]
and H* = [I: —G*]. Then, from the definition of G* we obtain the
relationship

H°MH” = H*MH* + (G° — G¥Y)M,,(G° — G*),
which, according to (23) can be written as

H°MH® = H*MH* + O(h®). (24)
From (10) and assumption 2 we know that

M, = G'M,,G% + Q + O(h%),

where Q = {§ exp (s4)X exp (s4') ds is the covariance matrix of &,
Therefore

HMH® = Q + O(h*,

and by expanding exp (sA) as a power series in the expression for Q we
find that Q = hZ + O(h?) so that H°MH"/h is of O(1) and tends to a
positive definite limit as 4 tends to zero.
Since A and B minimise (11) we know that det (H°MH"Y) =
det (AMHA’), and from the relationship
AMA = H*MH* + (G — G¥)M,,(G — G*Y, (25)
it then follows that

0 < det (AMIA) — det (H*MH*)

< det (HOMH®) — det (H*MH*"). (26)
Hence, from (24) and (26) we obtain
ama H*MH*
det P det——]— = O(h"). 27
i

Using a lemma proved by Sargan [6], we deduce from (25) and (27) that

(G — G¥)M (G — G*Y = O(h®). (28)
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But
(G — GOM,,(G = G = (G — G¥)M,,(G — G*)
+ (G* — GOYM,,(G* — G
+ (G — G¥)M,,(G* — G°Y
+ (G* — GOM,,(G — G*Y.  (29)

By (23) and (28) the first two terms on the right side of (29) are of O(h*)
and, using the Cauchy inequality, we can readily show that

(G — G¥M ,,(G* — G°) = O(h®),
and, therefore,
(G — GOM (G — G°) = O(h®). (30)
Given ¢ > 0, we know from the lemma above that for small enough A,
M, — (1 - S)Mzz
is positive semi-definite. Hence, it follows from (30) that
(G — GOM (G — G = O(h®),
which implies that
[E, — EY: 24 (E, — E?):l JMy,J [([jl - B J = O(h®).
=2 3 (5~ £

It follows from assumption 1 that
4
E, ~ES=0(h*) and Y (E, — E}) = 0O(h*). (31)
(=2

The last part of our proof involves the step from (31) to the asymptotic
bias of 4 and B. By assumption 5, the equation exp (h4) = exp (14°) has
a unique solution A” in . Moreover, the function exp (hA) is continuous
in the elements of 4 so that, given ¢ > 0, there exists # > 0 such that

h™!| exp(hA) — exp (hA")| < n
implies

J4 - a0 <
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in  (see, for instance, the lemma on p. 669 of Malinvaud [5]). From
(31) we know that

hlirp h™'| exp (hA) — exp (hA%)| = 0.

Hence, given a sequence of positive numbers {¢”:r = 1,2, ...} for which
lim,., &¢"” =0, we can find a corresponding sequence of positive
numbers {A"”: r = 1,2,...} such that lim,_ _ A" = 0 and

4 - 4 <&,
for all h < K. 1t follows that
A= 4%+ o(1). (32)

However, we can be more precise about the asymptotic bias of 4 than
(32). We introduce the vector a formed by taking the direct sum of the
non-zero (or unrestricted) elements in each row of 4. Then, since the
elements of E, are differentiable with respect to a, we have

dvec(E

*N(—L) = hS, + O(h?), (33)

da
where S, is a p x n* matrix whose rows are linearly independent unit
vectors, and p is the number of components in the vector a. Clearly, S,
has full rank.
Thus, we can write
dvec E(a)Y
h™"{vec(E,) — vec(E9)} = h"’(—;-—l(—)> (@—4d°), (34
da

where G lies on the line segment joining @ and a°. In view of (33) we know
that the matrix

dvec E{d)
da

h—]

has full rank for small enough & so that, since (31) and (34) imply that

0 veo Ey(@)Y
h-l(( vc;g_@) @ — a° = O(h*),

it follows directly that
A — A% = omd). (35)
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To establish the asymptotic bias of B we first introduce the matrix func-
tion

F(4,B)=E, + E; + E, = A" " {exp(h4) — I} B, (36)
so that from (31) we have

F(A, B) — F(A°, B% = O(h*). (37)

Since the elements of F are differentiable with respect to 4 and B we
obtain from (36) and (37) the equation

(a vec f@@)’@ 4 (“ﬁf&.@) (b — b°) = O(h*), (38)

da ob

where b is the vector formed by taking the direct sum of the non-zero
(or unrestricted) elements in each row of B, and the elements of d and b
lie between those of @ and «°, b and b°, respectively. Clearly, & vec F/da
is of O(h) as h tends to zero, and

dvecF\ {dvecF (VCLB
e == A —
( b > P =[A" exp(hAd) - I} @ I]——

=[A7 {exp(hA) ~ I} ® I] S},

where S is a ¢ x nm matrix whose rows are linearly independent unit
vectors, and ¢ is the number of components in the vector b. For h small
enough, it follows that

_,0vecF
ob’

has full rank. In view of (35) we can now write (38) as

, 0 vec F(a, by .
/i — - b9 =
) i = (b - b% = 0.

Thus
B — B, = 0(h?). (39)

and the theorem is proved.
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We can expect, therefore, that the asymptotic bias of the QML estimators
diminishes rapidly as the interval between observations decreases. The
order of magnitude of this bias, O(h?), is better than that of similar esti-
mators obtained from the discrete approximation to (1).'* This suggests
that the use of the approximate model (7) for estimation purposes may
be worthwhile in spite of the computational difficulties. We should
emphasize, however, that the final results (35) and (39) are conditional
on the assumptions we have made earlier. When these assumptions
[particularly assumption 2(ii) and 2(iii)] are not satisfied, the order of
magnitude of the asymptotic bias of our estimators may be larger than
that given by (35) and (39). We take up this problem in appendix A.
We show there, inter alia, that if the first derivatives of the elements of
z(t) do not exist at a countable set of points on the real line, then the
order of magnitude of the asymptotic bias is no longer O(h%) but is of
O(h). Thus, when our assumptions are not satisfied, asymptotic theory
does not lead us to prefer the approximate model (7) rather than models
derived from simpler approximations such as the discrete approximation
to (1). We now turn to discuss the limiting distribution of the estimators.

6. The limiting distribution of the QML estimators

Since the exogenous variables are non-random we know that the
disturbance #, in (7) has the same covariance matrix &,. This matrix
is Q = hZ + O(h?), and thus the distribution of #, is degenerate in the
limit as & tends to zero. If we assume that the diagonal elements of 2
are non-zero then Q™1 is of O(h™1) as h tends to zero.'*

Given the sample observations {y,.x; t =1,..., T} we know that
the QML estimators of 4 and B satisfy the necessary conditions
trace (V™1 dV) =0, (40)
where

T
V=T" Z; (yz - GXI) (yr - Gxt),~
t=

13 Sargan [6] has shown that the QML estimators of the coefficient matrices 4 and B
obtained from the discrete approximation to (1) have an asymptotic bias of o).

14 Of course, some elements of 27! may be O(1) if 2 has zero clements and this case
is not excluded. The assumption made ensures that there is at least one element in each
row of 21 thatis O(h™ 1) and not O(1).



156 P. C. B. Phillips

If we denote by ¢ the column vector formed by taking the direct sum of
the non-zero elements of successive rows of the matrices A4 and B the
system (40) can be written

T
He)=T"" ), WV 'y, — Gx) =0, (41)
t=1
where W is the matrix whose (i,j)Yth element is w,;, = Y 723" (0g,/

dc)xy,, and g, is the (j, k)Y'th element of G. In passing we note that the
matrix W, is of O(h) as h tends to zero.'*

The 'th row of (41) has the following limited expansion’® in the neigh-
bourhood of ¢°, the true value of ¢,

Hife) = H{(c®) + HI(c®) (¢ = ) + 3l = OV HH ) (¢ — ¢°),

where Hl(c) = dH/[c)/dc, H?(c) = ¢*H (c){0cdc’ and the vector ¢! lies
between ¢ and . If ¢ denotes the QML estimator of ¢, ¢ satisfies

H(c®) + Qpld — ¢°) =0, (42)
where the (7, j)'th element of the matrix @, is
(?Hl-((’o)/acj + 42 = VP H ('Y ocdc;. (43)

Under the assumptions we have made, (43) has a finite limit in pro-
bability. In fact, we can readily show that Q, converges in probability
to a matrix which is dominated, as h tends to zero, by

;
—plimT™' Y WUN™'W (44)

T-+m t=1

where the affix 0 denotes evaluation at the true value ¢, and

T
N =plimV°=Q + }im T™1 Y ¢4
T -
From an earlier remark it follows that N™! is of O(h™1), so that (44) 1s
of O(h). Assumption 4 suffices to ensure that (44) is non-singular. Hence,
if we write Q = plimy_ ., Q. O Visof O(h™1).

'3 A little reflection shows that there is at least one element in each row of W, which
tends to zero no faster than O(k).

'8 It may be worth mentioning that in the system (41) the clements of W), ¥ and G are
all functions of ¢.
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From (42) we obtain
¢ — plimé = — Q7 "H(c® + Q! plim H(c°),

so that T*(@¢ — plim ¢é) has the same asymptotic distribution as

T
UMY WONTIE - 07T
t=1
T T
X [T‘l Y WON~'¢, —plimT™" Y WIO’N'Id)tJ.
t=1 =1
(45)
The first term of (45) has a limiting normal distribution. For, if we denote

the derivative dg;/dc; by I;;, we may write the i'th element of the vector
T_% ;r=1 VVtO’N_lir as

n n+3m R . T
DIRDIN I HA (46)
jk= r= t=

where n* is the (j, k)'th element of N ™. Under the assumptions we have
made it is clear that (46) has a limiting normal distribution.!” Moreover,
the asymptotic covariance matrix of the first term of (45) is

Ql{plim T ! i VKO’N_IQN_‘VKO} o (47)

T—w t=1

and this matrix is of O(h™') as h tends to zero.
Since

y, = Zo exp (shA)E, _ + uys
where
W= ZO cXp (ShA)Xt—.v

and

h
% = | exp (sA)Bz(th — s)ds,
(4]

17 (46) is a finite linear combination of elements such as T°* 7 _; x,, &, and x, in-
cludes lagged endogenous variables as well as exogenous variables for various r. To show
that such elements have a limiting normal distribution when x,, is a lagged endogenous
variable we must assume the existence of moments of &, of higher order than the second
(hence our assumption 3). We can then appeal to the recent results of Schonfeld [7].
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the limiting distribution of the second term of (45) depends on that of

143 II‘
DINDY
jk=1r=1s

for i =1,2,...,n But the elements of ¢, are bounded, so that
T 33T ¢ul, -1 -5 has an asymptotic normal distribution with
mean zero and variance [Q],,limy.,, T™' Y7 ¢i. We can deduce
that the limiting distribution of the second term of (45) is normal with
mean zero and covarlance matrix

07'KQ™Y (48)

s

n T
Z l?jrnjk [CXp (ShA)]rp T £ Z‘I (vbktép t—1~—s¢
p=1 1=

0

where

K= S 5 Lexp(s,hA)2 exp (s;hA)LN"

s1,52=04,j=1

r
X {Tllm T‘l Zl ¢t¢t—s1+s;}Nj'
w =
L; 1s the matrix whose (r, s)'th element is [% and N" denotes the i'th row
of N~ !. From assumption 2 and the orders of magnitude of 2 N~ ! and
the elements %, it follows that K is of O(h*). The matrix (48) is then of
O(h?) as h tends to zero.

We can similarly show that the asymptotic covariance between the
first and second terms of (45) is of O(h?). Hence, the dominant term as
tends to zero, of the asymptotic covariance matrix of T*(@¢ — plim &) is
the matrix (47). We have now proved the following result:

Theorem 3

The limiting distribution of (hT)* (¢ — plim¢) as T tends to infinity
is normal for each fixed h. The mean of this limiting distribution is zero
for all h and the limit, as & tends to zero, of the covariance matrix of
this limiting distribution is

T -1
lim h {plim[T"1 > W,O’Q"‘Wt"] }
h—~0 T— =1

= [(lim ™2 trace {(9G”/0e)Z 1 (8G°/ie )M, })) "

=[SZ'®JM,,J)S] L,
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where ® denotes the right-hand Kronecker product and S is a selection
matrix used to delete those rows and columns of ™! ® J'M,,J which
correspond to the zero elements of 4 and B.

The fact that the asymptotic covariance matrix of T*(¢ — plim ¢) is
of O(h™')is not entirely unexpected. In the first place, the QML estimator
of ¢ obtained from the discrete approximation to (1) has an asymptotic
covariance matrix of the same order.!® Furthermore, in the simple case
of a single-equation model with no exogenous variables, say Dy(t) =
ay(t) + {(t), the result is fairly obvious. For the estimator we have been
using becomes, in this case, the least squares estimator which satisfies

T T
= 3o £t
t=1 =1
The limiting distribution of T*(c" — ¢") is normal with mean zero and
variance 1 — e¢**. We readily deduce that the asymptotic variance of
THa — o) is of O(h™Y).

7. Concluding remarks

In this paper we have shown that the presence of exogenous variables
in systems of stochastic differential equations can cause serious complica-
tions. However, we found in section 3 that the discrete time model can
still be used for estimation purposes after we have constructed an
approximation to the component of the model involving the exogenous
variables. The specification error implicit in this approximation is small,
and so too is the asymptotic bias of estimators derived from the approxi-
mate model. The QML estimators considered in the paper have a limiting
normal distribution, but with a biased mean and covariance matrix.
This bias disappears as the interval between successive observations goes
to zero. The conclusion of asymptotic theory leads us to favour the
discrete time model rather than the discrete approximation for estimation
purposes, but only in certain cases. This qualification depends on the
results of appendix A to this paper where it is shown that the crucial
assumptions 1, 2(ii) and 2(iii) will be satisfied when the exogenous varia-
bles are, essentially, either smooth non-random functions of time or

'8 Sce Sargan [6].
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stationary stochastic processes that are differentiable in mean square
to the third order.

Appendix A : Some conditions on the exogenous variables

The purpose of this appendix is to indicate how assumptions | and 2
in section 5 of the paper can be derived from more basic assumptions
about the exogenous variables. In treating the discrete approximate
model Sargan [6] has already done this and the argument here follows
a similar line. We consider first the case where the elements of z(t) are
non-random functions of time.

Assumption A

A1) The elements of z(t}) are non-random continuous functions of
time that are bounded uniformly in ¢.

A1) The first three derivatives of z(¢) exist and are bounded uniformly
mn ¢.

A(iii)  The matrix limy_ , N™! [§ z(t)z(r — r) dt exists for all real r and
when » = 0 it is positive definite.

A(iv)'® The matrix lim,_, T~ Y71, z(th — s)z(th — r) exists for all
real s and r.

A(v)  The submatrix

zz 7z., 7Z_,
m 774 2.2 7.z, Z_,Z.,
* Z.,Z Z_,Z_, Z_,Z_,

of the matrix M,, given in assumption 1 of the paper is positive
definite for h > 0.

In view of A(ii) there exist finite positive quantities d, and d, for which
[20)]] < do and |z9(t)| < d; for all t. Then, |z(t) — z(t — s)| < d;s
for s > 0, and we can show that

“ h! 3!1 z(t)z(1) dr — Z(th)z(th)’,

(t— 1)k

< dodlh + d%hz/l

' We must make A(iv) an explicit assumption because, although the existence of
limp,,, 771 37, z(th)z(thy is sufficient to ensure that the upper and lower limits of
T™'5 T, 2(th — s)z(th — r) are finite, it is not sufficient to ensure that these are equal for
h> 0.
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If we now let N = Th, where T is an integer representing the number
of sample observations, we have

T
’ j )z(t) dv — TV Y z(th)z(thy

t=1

T th
ST Y (A z(t) (1) dt — z(th)z(thy
t=1 (t— 1)k
< dod h + dih*/3. (49)

It follows from A(iv) and (49) that
T N

lim lim T7% Y z(th)z(thy = lim N™' | z(x)z(z) dx,

h—owo T—w t=1 N—-w 0

which is, by A(iii), positive definite, We know that

jes]

T Z =T~ Z { [ exp (sA)Bz(th — s) 2(th — rVB’

t=10 0
x exp(rd’)dsdr
+ T1 Z j 5 exp (sA)(th — s)i(th — rY
t=10 0
% exp(rA’)dsdr, (50)
and since the second term on the right side of (50) converges in probability
to
exp (s4)X exp (s4') ds, (51)

1
Ot g

which is positive definite, it follows that

plim Ty, Y., = 11m T™Y* Y* + QF
T
where Y*| = [y&, ....y5_ ] and yF = [§ exp (s4)Bz(th — s)ds. The
matrix M,,, given in assumption 1 of the paper, is then
Y YR YXZ YHZ_, Y¥Z_,
N Nzy, zz zz., zz_,
Mo =M TN 2y 222 2.2, 7.2,
Z Y% 2,2 7,2, Z_.Z_,

Q% 0
o ol
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which is positive definite in view of (51) and A(v). The fact that the matrix
lim, o J'M,,J = J'M,,J exists and is positive definite then follows
from A(iii). This establishes assumption 1.

Under assumptions A(i) and A(ii), ¢, is of O(h*) uniformly in ¢ and
assumption 2 in the body of the chapter is clearly satisfied. But A(i) and
Ali1) are quite restrictive, and we may consider how the order of o, is
affected by relaxing these assumptions. If the elements of z(t) are not
necessarily smooth functions of time then we may expect fairly simple
approximations to perform as well in terms of asymptotic bias as the
interpolation formula developed in the paper which uses current and
two lagged values. As an alternative to A(ii) suppose we assume:

A'(ii) The first derivatives of the elements of z(t) exist and are bounded
except at a countable set of isolated points on the real line.

By subdividing the interval (th — 2h, th) into subintervals within which
the first derivatives of each element of z(1) exist we find from the mean
value theorem that Y(th — 5) is of O(h). Then ¢, is at most of O(h?) and
the estimators considered in the chapter have an asymptotic bias of
O(h) as h tends to zero. Since the simple approximation z(th — s}~ z,
for s in the interval (0, ) is sufficient to yield this result, it seems that in
the case of exogenous variables satisfying A’(ii) rather than A(ii) the
approximate model (7) has no real advantage over simpler approximate
models.

Aliil) might also be regarded as a rather restrictive assumption
because it excludes important cases such as exogenous variables which
are simple polynomial functions of time. However, we can take account
of these cases by appropriate normalisation. Instead of A(iii) we can
substitute the assumption:

A’(i11) The matrix

N
Jlim Dy'§ z(t)z(t ~ vy de Dy 1,
o 0

where Dy = diag (Jd¥,..... /d},) and d¥ = [¥ z(c)* de (i = 1.

mnt

... m), exists for all real r and when r = Q it is positive definite.

The sums in assumption 2(ii) of the paper would also have to be normalis-
ed. Although the exogenous variables are not uniformly bounded when
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they are polynomial functions of time the interpolation formula (4)
should give a good approximation to z(th — s), for s in the interval (0, k).
The error Y(th — s) will be of O(h®) and assumption 2(ii) of the paper will
be satisfied when the sums are appropriately normalised.

We now consider the second case where z(¢) is stochastic and we assume
the following:

Assumption B

B(1) z(t) is a strictly stationary ergodic process that is stochastically
independent of the process (1),

B(i)) The autocovariance matrix R, (t) = E {z()z(t — 7)'} has con-
tinuous derivatives up to the sixth order and R, {0) is positive
definite.

B(iii) There exist no non-zero vectors ¢, b and ¢ such that

a'z(t) + bzt — 1) + 2(t — 21) =0, >0,
with probability 1.
Given that the initial conditions are in the infinite past we have
R (1) =E{y):zt — 1)} = E exp (sA)BR_,(t — s)ds,

and

) = E {y(yt — o}

= { | exp(sA)BR,.(t — s + r)B exp(s4)ds dr
0

(=3

+ f exp (sA)Z exp {(s — 7)4'} ds. (52)

We denote the first matrix on the right side of (52) by Rf*(z). It follows
from B(i) that

R¥*0) R.(0) R, R,(2h)
M. = R.(0) R0}  R..(h) R.(2h) n 2 0
TR RL(D RL(0) R 0 0oy
R,,(2h) R..(2h) RL(h) R_(0) (53)
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where Q* is given by (51). We can deduce that M,, is positive definite
from B(iii) and the fact that both R,(0) and Q* are positive definite.
It is clear from (51) that the limit matrix J'M,,J is positive definite.
This establishes assumption 1 of the paper.

Since ¢, is a linear filter of the stationary ergodic process z(t) we know that

plim 71 . i, = Elsdi-,) (54)
T t=1

and
gl_{m T Z (15 (151 r = E((P,(f);_,), (55)

for all integral . To find the order of magnitude of (54) when r = 0 we
consider first the mean value

= }j E{zah(th — sy} B' exp(s4')ds. (56)
0

From (4) and (5) we obtain
E{zy(th — s} = R.(s) — [R..(0) = s{R,,(2h) — 4R_,(h)
+ 3R..(0)}/2h + s* {R..(0) — 2R.(h)
R..(2h)}/217]. (57)

By expanding cach of R,,(s), R,.(h) and R_,(2h) in a Taylor series to the
third order about the origin we find that the right side of (57) reduces to

{sREN0,) — sh(2h — s)R(B,) + 4sh(h — s)RE(0,)}/3!,

where 0 < 0, < 5,0 < 0, < h, 0 < 6; < 2h Hence, for s in the interval
(0. h), E{z ,z//(rh — s)'} is of O(h?) as h tends to zero and it follows from
(56) that E(z,¢y) is ofO(h ). We can similarly show that the other elements
of (54) are of O(h*) when r = 0. Thus, assumption 2(ii) of the paper Is
satisfied.

We now turn to (55). If we put r = 0 we have

E(p,by) = Egcxp (s A)BE {{(th — s W(th — s,) } B’

Oty

x exp (5,4 ds, ds,, (58)
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and
E{Y(th — s\)(th — s, } = E[z(th — s,){z{th — s,)
— 3(th — s,)}] — E[2(th — s,)
x {z(th — s) — 2(th — 5)}'] (59)

From the definition of 7 in (4) it follows that the right side of (59) is
(omitting the z subscripts in R,,)

R(s; — s4) — [R(Sz) - 2h{ R{s, — 2h) — 4R(s, — h) + 3R(s,)}
2h2 % (R(s,) — 2R(s, — ) + RGs, — 2h)}}

- {R(—sl) - [R(O) - %{Rp%) — 4R(~h)
+3RO)} + —& zh2 L (R©O)— 2R(—h)+ R(-zh)}}}
zh[{RQh —s)— [R(zh) —%{R(O) — 4R(h)

+ 3R(2h)} + {R (2h) — 2R(h) + R 0)}}}

- 4{R(h —5y) - |:R(h) = L {R(=h) — 4R(0)
+ 3R} + 2‘% {R(h) — 2R(0) + R(~h)}]}

+ 3{1%(— - [R(O) — - {R(=2h) = 4R(~h)

+3R0)} + =5 2h2 {R 0)— 2R(—h) + R(—zh)}]ﬂ
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- ;EHR(—SI) - [R - ~—{R —2h) — 4R(~ h)

+ 3R(0)} + 5‘% [R(0) = 2R(~h) + R(—zh)}]}

1

- Q{R(h — 5, — [R(h) . - (R(=h) — 4R(0)
+ 3R(h)} + ‘ {R(h) — 2R(0) + R(—h)}J}
+ {R(zh -5, - [R(zh) - 5} {R(0) ~ 4R(h)

+3RQh)} + 5;% {RQh) = 2R(h) + R(0) }]H
(60)

We now expand each of R(s, — s5,), R(s,), R(s, — 2h). R(s, — h), R(—s,),
R(h — 5,), R(2h — s 1h R(—h), R(—2h), R(h) and R(2h) in a Taylor series
to the sixth order about the origin and, collecting terms, we find that (60)
reduces to

RN IR 5,88 s2sS
RO 22 7 50 R 2 5183
=35 0755~ 7805 * | 144012

- h 51(s, — Hh)®
R©)Q 52 _ D12 L
- { 72007 3600
— 2/1 2(? - 2h)
R®Y *S‘-’-*_ 2 .
TR0 { 1440k 144012

_ ROy 557 s‘_Z‘sf
R )(720 430n + Taa02

2 6
©) — ST s —sy)°
 RE0,) { 720h2 360k }

$2(2h — 5,)° _ s32h — 21)6}

+ RYg.)

I440h 14404



Estimation of Differential Equations 167

s sTht sys,ht sysik?
360 720 180 288
sy52h° sfs%hz}

+ RO(D,) {
480 720
2s.h°  2s2h* s skt
45 45 15
sis,hd s 833 sfsﬁhz)

15 45 45

+ R(B,) (—

Lh sys,ht sis,hd
R©)g S 5152 152
R ”’)(+ 380 180 480

ssh* 5,830 sisih?
720 288 720

, 25,0 s.s,ht §ts,h3
R(©) _ .2 1°27% 2P
+ (0“)< 45 5 45
N 252h° 3 s,53h° + s252h?
45 15 45 )

(61)

where the 0, lie in the range —2h < 8, < 2h. From (58) and (61) it now
follows that

E(¢:¢7) = O(h®),

and assumption 2(iii} of the paper is satisfied.

Since assumption 2(i) is needed only to help derive the limiting distribu-
tion of the QML estimators, assumption B is sufficient to ensure that
these estimators have an asymptotic bias of O(h3).

However, assumption B(ii} is somewhat restrictive. For, if £(2) is the
spectral distribution matrix of the process z(¢), the existence of the sixth
derivative of R,,(t) at the origin implies that

trace {f Az dF(l)} < o, r=17223.

il o}
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Thus, the process z(¢) is differentiable in mean square to the third order.?°
It may appear unrealistic to assume that the exogenous process has this
property when, from the formulation of the model, it is clear that the
mean square derivative of the endogenous process y(z) does not exist,
We therefore consider the following weaker assumption as an alternative.

B’(11) The autocovariance matrix R,,(r) has right and left derivatives up
to the third order at © = 0 and continuous derivatives to the third
order elsewhere. R_,(0) is positive definite.

Since we do not assume in B'(ii) that R, (r) is differentiable at © = 0 we
do not exclude processes that have no mean square derivative. Thus
the elements of z(f) may, for example, be generated by a first-order
stochastic differential equation system driven by pure noise.

This alternative assumption B'(i1) does not affect the derivation given
earlier of assumption [ of the paper. On the other hand, assumption 2(ii)
is now not generally true. For, under B'(ii) we can use only one-sided
Taylor expansions of R_,(t) about the origin, and although it is still
true that E(z,¢;) and E(zhqu;) are of O(h*), we now find that

E{z_ Ylth — s} = 55 B = RO +) = RO0-)} + O(h?),

where R(V(O+) and R(zlz’(()—) denote the right and left derivatives of
R,.(z) at the origin. It follows from the first mean value theorem for
integrals that

Ez,-, ) ~*“”'R‘”(OJr) REN0—)} B ™ + O(n),

where 0 < 0 < h. In the same way E(y,_,¢;) is of O(h?) and we deduce
that the matrix plimg_, T™' > 7, x,¢; in assumption 2(ii) of the paper
is generally of O(h?) as h tends to zero.

Moreover, under B'(ii), assumption 2(iii) of the paper is no longer true.
We now find that for h = s, = 5, 20,

$;8,  $25,  s;52  s%s3
th . _ _ l 2 l 2 _‘Al 2 - 192
Etth =s)btth =)'} = ( RIS TERE TR TS

x {RDO+) — RY0O-)} + OR?),

© See, for instance, Hannan [2].
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and, by dividing the domain of integration in (58) up into the region
5, > s, and the rest (as in Sargan [6]) we obtain

E@d) = 23 WB{RI0+) ~ RUO-)}B' + 00

Thus, assumption 2(iii) is not satisfied.

The effect of replacing B(ii) by the weaker assumption B'(ii), therefore,
is to increase the asymptotic bias of the estimators in section 5. In the
case of the QML estimators of 4 and B we can deduce, by following the
line of argument in theorem 2, only that the asymptotic bias is of O(h?).
This leads us to the conclusion based on asymptotic theory that the ap-
proximate model (13) offers no real advantage over simpler approxima-
tions (such as the discrete approximation) when the exogenous vanables
are stochastic processes which are not differentiable in mean square
and the model is estimated by a conventional non-linear regression.

Appendix B: An alternative procedure based on instrumental variables*'

When the exogenous variables are stochastic and not differentiable in
mean square, the asymptotic bias of the estimators we have been con-
sidering is somewhat disappointing. The main reason for this is that in
estimating (7) we use as regressors the set of variables {y,_ 1, z,, z,_ 1,2, 5}
and as we have seen in the last appendix, E(y,_;¢;) and E(z,_¢;) are
of O(h?) rather than of O(k*) in this case.

One way of overcoming this problem is to replace y,_; and z,_, in the
regressor set by the instrumental variables y,_, and z,_,. We can then
estimate (7) with the set of instrumental variables {y,_3, 7, 2,3, 2,3 }-
The procedure we propose is as foliows:

() Estimate the coefficient matrix G by an unrestricted least squares
regression and construct the residual moment matrix 2* from this
regression as an estinmiator of €.

(ii) Estimate 4 and B by minimising the quadratic form

trace {Q* " HY' — GXZ*Z*¥Z*)"'Z¥(Y — XG)},

21 I am very grateful to Professor Sargan who first suggested to me that instrumental
variables would be useful in this context.
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with respect to the unknown elements of 4 and B, where
Z* = [z}, ..., b%] and z"" is the vector of instrumental
variables -2, 2z, Ziy, 2, 3).

We let 4 and B be the limits in probability of the instrumental variable
estimators of 4 and B obtained via (i) and (ii). To establish the asymptotic
bias of 4 and B we find it convenient to modify assumption B(iii) some-
what and introduce B(iv) as follows:

Assumption
B'(iii) There exist no vectors a, b, d and d, not all zero, for which
a'z(t) + b'z(t — 7))+ c'z(t — 20) + d'z(t — 37) =0, T > (),
with probability 1.
B(iv) The matrix M3, = E(x,z¥) is non-singular for positive #,
Then we have:

Theorem 4
If assumptions B(i), B'(ii), B(iii), B(iv) and 5 are satisfied, then the
asymptotic bias of 4 and 7 js given by

A— 40 = O(h’) and B - o — O(h3).

Proof
A and B minimise
NI ~ MMz, — g, (62)
where
N = plim T Yy — GX') (Y — GX)=Q + E(p,¢)),
T-w
M}, = plim T-1y 7+ _ E(yz}¥),
T
and

Mz = plim T™12x 7% _ pip e

T—w
The first-order conditions for a minimum of (62) are
NTIMEME \hpx N='GMx M- M =0, (63)

where G = G(4, B). But, since My = GMx 4 M}¥,, where M}, =
Plimy ., T715¢ 2% we derive from (63) the equation
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(G° — OMEME MY, = — M3 ME "M, (64)

Now M}, = E(¢,z}') and this matrix has elements which arc of O(h*) as
h tends to zero. For, E(¢,z,), E(¢,z,_,) and E(¢p,z ;) are all of O(h*) as
in the last appendix, and

E(¢.yi-1) = (J; exp (SA)BE {{/(th — s)y,_,} ds.

But

E{lth—s)yi_,} = Ro2h—s)— [R,,,@h)
- ;z [R,(0) ~ 4R.,() + 3R_,(2h)}

2
+ i—z— {R,,(2h) — 2R, (k) + R, (0) }},

and, expanding R_,(2h — s), R, ,(2h) and K, (h) in a Taylor series to the
third order on the positive side of the origin,>> we find that

E{{(th — s)y;_,} 1s of O(h*) when 0 < s <h so that E(¢,y,_,) is of
O(h*). Now

R,, R,.(=2h) R (0) R, (h)
M = | Ra(Zh) R..(0) R.,(2h)  R,,(3h)
= R, (0)  R.(-2h R,0) R,MH
_Rzy( - h) Rzz( - 3h) Rzz( - h) Rzz(O)
[ Ry454(0) M34] Q* 0
T My, Mg, * [0 0]’

where Q* and R, .(0) are defined in (51) and (52), respectively, and
M34 = [Ryz( _2h) . Ryz(o) : Ryz(h):L

R..(0) R.2h)  R.,,(3h)
Mas =} R (=2h) R_(0) R,(h) |
R

T30 R~k R.O)

and

22 Such an expansion is possible because R, (1) = [& R, (t + 5B exp(s4) ds, R,
(v + 5) has continuous derivatives to the third order for s > 0, v > 0 and the matrix A
has stable roots.
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It follows from B'(it1) that M,, is positive definite so that, since Q* is
positive definite, M is non-singular for positive h. Thus, (64) is well
defined for & > 0.

From equation (64) and the order of magnitude of M%, we now obtain

(G° — G)M* M5 (G® — Gy = O(h®). (65)

The matrix M¥MZ, is positive definite when 4 > 0 and converges as h
tends to zero to the limit matrix M¥ M %, where

5 — [Rn(©) i ® R,(0)
i® R,(0) il'® R,,(0)]

Using the lemma given in section 5 and following the line of argument
in the proof of theorem 1 we find from (65) that

(G° — OMEM.,, (G° — G) = O(h®),

which in turn implies that

(E? — E) = O(h*).

RS

E® — E, = O(h*) and

fi

i=2
In view of assumption 5, we can now establish in the same way as in the
proof of theorem 2 that

A—-A°=0h% and B - B® = 0.

There scems to be no reason why the set of instrumental variables
should be confined to those we have considered here. When £ is small,
there may be some advantage to be gained in small samples of including
extra variables such as y,_; m Z* On the other hand, since the
n x (n + 3m) matrix G depends only on the unknown elements of 4
and B we need only use the instrumental variables y,_, and z, in Z*.
However, in this latter case the asymptotic bias of the resulting estima-
tors 1s not assured by the proof of the above theorem because the rank
of M¥, in this case will be less than # + 3m.

Appendix C: Computational note

When we come to estimate the model (7) in practice, we will frequently
wish to use the derivatives of E,, E,, E5 and E, with respect to the
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unknown elements of 4 and B in the computation. The expressions given
earlier for the matrix functions E, (i = 2, 3, 4) have complicated deriva-
tives which can lcad to serious rounding errors and it is useful to simplify
these expressions first by expanding exp (hA) in a power series so that

E, = W[{I + %hA)} C + iI]B,

E, = h[{(hA)? — 21} C + 4(hA) + I]B,
and

E, = h[{f — $hA)} C — 31]B,

where C = Y2 (hA) /(r + 3)!
These expressions lead to simpler derivatives that do not, in particular,
involve powers of A~ 1.
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