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THE ESTIMATION OF SOME CONTINUOUS TIME MODELS!

By P. C. B. PHILLIPS

When a continuous time model is estimated from its non-recursive discrete approxi-
mation, the presence of identities and exogenous variables in the system does not preclude
the use of standard procedures. However, if we wish to use the exact discrete model for
estimation purposes, the treatment of identities and exogenous variables is not so straight-
forward. It is found that the procedure based on the exact discrete model is unlikely to
be affected by the presence of identities, but when exogenous variables occur in the system
some sort of approximation is usually necessary before the model can be estimated with
discrete data. An approximate model is constructed to deal with the latter case and the
asymptotic properties of estimators derived from this model are investigated.

'

1. INTRODUCTION

UNDER CERTAIN CONDITIONS, a stochastic model represented by a system of con-
‘tinuously distributed lags can be regarded as the solution of a system,of linear
stochastic differential equations. Two general approaches are available if we wish
to estimate the parameters of such a system by conventional methods and with
discrete data.? The first approach (see [1 and 2]) is to take a discrete approximation
to the model and estimate the approximate model by standard methods. The
second approach makes use of the discrete model which is known to correspond
to the continuous time model in the sense that observations at equidistant points
in time that are generated by the latter system also satisfy the former. The main
advantage of the second approach is that no spécification error is involved, so that
it is possible in some cases to obtain consistent and asymptotically efficient esti-
mators of the parameters in the model. In addition to the arguments of asymptotic
theory, the results of a previous study [8] have given some recommendation to the
second approach on the basis of small sampling performance. However, the model
used in the sampling experiment of this study was relatively simple and it is the
aim of the present paper to discuss the use of the second approach in more compli-
cated models. The complications with which we will be concerned are the presence
of identities and exogenous variables ; both these complications may be expected
to occur in more realistic economic. models.

Before the procedure is viable when there are identities in the model, we must
ascertain whether the disturbance in the exact discrete model has a non-singular

! In writing this paper I have benefited from discussions with Professor J. D. Sargan. I am also very
grateful to both referees for their comments and suggestions on earlier drafts of this paper.

2 The following comments are not intended to suggest that these two approaches exhaust all pos-
sibilities. Indeed, Phillips [7] has indicated a different procedure, the essence of which is to estimate
the spectral density matrix of the system variates from a sufficient number of sample autocovariance
matrices and then use this estimate to obtain estimates of the parameters of the model. Unfortunately,
this procedure makes no allowance for possible a priori restrictions on the parameters, so that estimates
obtained in this way will not be asymptotically efficient. The procedure also neglects the aliasing or
identification problem. On this last point the reader is referred to [9].
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804 P. C. B. PHILLIPS

distribution. A simple test that should be widely applicable is developed for this
purpose in Section 2. If the distribution is non-singular, then we can proceed to
estimate the parameters of the model in the usual way.3

When exogenous variables occur in a system of stochastic differential equations,
the corresponding discrete time model no longer has a simple autoregressive form.
In fact, the exogenous variable component in the exact discrete model depends
on a continuous time record of the exogenous variables. In most cases such a
record is not available, so that some sort of approximation is usually necessary
before the structural parameters of the system can be estimated with discrete data.
An approximate model is constructed to deal with this case and the asymptotic
properties of quasi-maximum likelihood (QML) estimators derived from this
model are investigated.

The methodological approach we adopt in this section of the paper is to develop
an asymptotic theory on the hypothesis that the variables in the model are observed
at equispaced intervals in time measured by some positive real number h. If N is
the number of unit time intervals over which we have observations and T is the
total number of observations available, then N = hT. As N increases we can
expect our sampling interval h to decrease so that we have the functional depend-
ence h = h(N); but it is very difficult to say anything more precise about this
function since the function may well differ according to the time series under
consideration. For many economic series h remains fixed for a reasonable number
of unit time periods, so that T can be fairly large before h changes and the series
is observed more frequently. For instance, if the time unit is taken to be a year and
h = 1/12, then we may have several hundred post war observations of a series that
is available monthly but, as yet, not more frequently. Thus, the line of argument
taken in Section 3 of the paper is to consider first an asymptotic theory as T
becomes infinitely large for fixed h. We then turn our attention to what happens
to the asymptotic bias and limiting distribution of the estimators we are considering
as h tends to zero. This theory can tell us whether our estimators are likely to be
satisfactory when the number of observations is large and the sampling interval is
small. Since Sargan [11] has developed a similar theory for estimators based on
the discrete approximation, the present theory can also help us to discriminate
between the different procedures on the basis of asymptotic properties.*

* Since the problem is one of non-linear regression, an iterative technique will be required. See
Phillips 8].

It would be possible, no doubt, to construct an asymptotic theory in a different way. We could,
for instance, consider first the effect of letting h and T approach their limits while N remains fixed, so
that our data becomes closer to a continuous time record in a given time period; and then we could
allow N to tend to infinity. However, this approach tends to contradict the manner in which economic
variables are observed. It would be much more complicated to construct a theory which allowed
h = h(N)and T = T(N) to converge to their respective limits as N increased indefinitely. Although this
latter situation comes closer to the facts, it is, as we have indicated above, very difficult to be specific
about the functional dependence h(N) and at the same time expect this function to be realistic enough
to apply to all variables in the model.
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2. LINEAR MODELS WITH IDENTITIES

The type of system with which we are frequently concerned involves identities
as well as stochastic equations. To accommodate this situation, the general model
may be formally written

(1) Dy(t) = Ay(t) + H{(1)

where the matrix 4 is n x n with distinct characteristic roots, all of which have
negative real parts, the matrix H is n x r with r < n, and the elements of both 4
and H belong to the real number field. D is the differential operator d/dt, taken in
‘the mean square sense, the disturbance {(t) is assumed to be a pure noise process,’
and the covariance matrix of the integral of {(t) over a unit time interval is assumed
to.be the positive definite matrix 2. Thus, if the last n — r equations of (1) are
identities, we may write H' = [1,:0]. Unlike H some elements of 4 are unknown
and are to be estimated; others are restricted a priori to be zero, in accordance
with the specification of the model suggested by theory.

The proper interpretation of a system of stochastic differential equations such
as (1) has been extensively discussed in the literature on stochastic processes and
was the subject of a number of early papers. One of the mathematical difficulties
that arises in treating (1) as it stands is due to the fact that {(z) is not really a second
order process at all® and hence the derivative Dy(t) does not exist in mean square.
Some authors’ might prefer to write the system as dy(t) = Ay(t) dt + Hdu(t) where
u(t) is a homogenous random process with independent increments (i.e., u(t) is a
process: of independent stationary increments for which the elements of
E{u(t) — u(s)} {u(t) — u(s)}’ are proportional to the length |t —s| of the time
interval), which is a symbolic way of writing the stochastic integral equation

W) = y(a) + AJ y(r)dt + HJ du(7)

for some fixed a. The reason why (1) is regarded as the underlying specification in
this paper is that it seems the most convenient way of formulating an econometric
model to correspond to a system of differential equations that have been developed
in economic theory.

The discrete model corresponding to (1) is

(2 (1) = exp (hA)y(t — h) + &(1)

where &(t) = fg exp (sA)H{(t — s)ds and h > 0; and the covariance matrix of &(t)
is given by

. .
3) Q= f exp (sA)HXH' exp (sA’) ds
0 .

5A pure noise process is usually described as a process with constant spectral density. Just as a
purely random process in discrete time {(t) is independent of {(s) whenever ¢ # s.

¢ Since the spectral density matrix of {(t) is constant, the covariance matrix of {(t) does not exist.

7 See, for instance, Doob [3] or, in the econometric literature, Wymer [13].
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which is not necessarily positive definite.® However, it turns out that Q is positive
definite in most of the important cases. This fact is of some importance when we
come to estimate A using the discrete model (2).°

2.1. General Results
We first prove the following:*°

THEOREM 1: The. covariance matrix (3) of &(t) in the discrete model (2) is positive
definite if and only if the subspace spanned by the vectors {A*Hei = 1,2,...,r
k=0,1,2,...}, where e, denotes the ith column of the r x r identity matrix, is the
entire n-dimensional Euclidean space.

Clearly, © is positive semi-definite. Let R" denote the n-dimensional Euclidean
space and M the subspace spanned by the vectors defined in the statement of the
theorem. To prove the necessary condition we need to show that the orthogonal
complement M* of M is empty but for the zero vector. If v lies in M+, then it is
orthogonal to the range space of the matrix exp (s4)H for all s. It follows that
v'Qv = 0, which by assumption implies that v = 0. Hence, M = R".

Conversely, suppose M = R" and let v be any vector of R" such that v'Qv = 0.
The integrand of (3) is a continuous function so that v’ exp (sA)HZH' exp (sA’)v = 0
for all s in the interval [0, h]. Therefore, for this range of values of s, v is orthogonal
to the range space of exp (sA)H. If we now take a first order Taylor series expansion
of the matrix exp (sA)H about the value at s = 0 we obtain

exp (sA)H = H + sA exp (s6A)H

where 0 < 6 < 1. Since v is orthogonal to the columns of H we have, for any r x 1
vector f, sv'A exp (sBA)Hﬂ = 0. That is, v'y(s) = 0 where y(s) = A exp (sPA)HS,;
and from the continuity of y(s), it follows that v is orthogonal to the columns of AH.
By taking successive higher order Taylor series expansions, it can be seen that v is
orthogonal to the columns of A*H for all positive integral values of k. Consequently,
v belongs to M*. By hypothesis, therefore, v = 0 and  is positive definite. This
proves the theorem. ,

It may be of interest to point out that the statement of Theorem 1 can be some-
what modified by using an alternative representation of exp (A4). For, if q is any
polynomial such that g(4,)) = e* where A(i = 1,2,...,n) are the characteristic
roots of A, then g(A) = exp (4A). We may, for instance, choose the Lagrange
interpolation formula so that

n—1

@ )= z ‘*Hl_l T o4t
Hék

k=0

8 For instance, in the trivial case where H' = [1,:0] and A4 is the direct sum of two matrices, the first
of which is r x r, it can be readily verified that Q is singular.

® Notice that the consistent estimation of A depends on whether A4 is identifiable in the reduced
form (2). This problem is discussed in [9].

101 am grateful to Professor A. R. Bergstrom for pointing out an error in an earlier version of the
proof of Theorem 1.
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More generally,

n—1

%) exp (sA) = ) o fs)A*

k=0
for all finite s and, when s is real, the coefficients o,(s) (k =0, 1,...,n — 1) are real.
Returning to Theorem 1 we need only make use of (5) in the proof of that Theorem
and we have the following :'!

THEOREM 2: The covariance matrix (3) of &(t) in the discrete model (2) is positive
definite if and only if the subspace spanned by the vectors {A*Heli = 1,2,...,r;
k=0,1,...,n — 1} is the entire n-dimensional Euclidean space.

A condition equivalent to that in this theorem has been used for some time in
the theory of control engineering to establish the controllability of a system (see,
for instance, [14]); and a recent article by Erickson [4] is relevant to the problem
with which we are concerned. Erickson mentions the possible singularity of the
covariance matrix (although, in his paper, the system variates rather than the
disturbances in the discrete model are being considered) and states a condition for
singularity which compares with that of the above theorem.

We now examine more closely a system in which the number of stochastic
equations is at least as great as the number of identities. This situation can be
expected when, for example, the original model is largely of the first order. The
reduced system may be regarded as a particular case of (1) by setting

A
A= [ 11 AIZJ’ and H = l:IrJ,
AZI A22 0

where the square matrices 4,, and A,, are of order r and n — r respectively, and
r = n — r in accordance with the stated hypothesis. A simple sufficient condition
that will enable us to test in this case whether the distribution of the disturbances
in the discrete model is non-singular is contained in our next result.

THEOREM 3 : The matrix (3) is positive definite if the submatrix A, of the structural
matrix A has rank n — r.

The proof is straightforward. For if v is such that v'Qv = 0, then v is orthogonal
to the leading r-dimensional subspace of R" as well as to the columns of the matrix

-[]

It follows from the condition of the theorem that v = 0 and £ is positive definite.

' Theorem 2 is a restatement of Theorem 1 in which we take account of the fact that the subspace
M intheproofof Theorem 1isspanned by a finite number of the vectors {A*Hei = 1,...,r;k =0, 1,...,}.
We could derive the fact that M is spanned by the vectors {4*Heli = 1,...,r; k=0,1,...,n — 1}
directly from the Cayley Hamilton Theorem. For, the characteristic polynomial of A is an annihilating
polynomial, and we can represent A" as a linear combination of powers of 4 of lower degree than n.
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2.2. Higher Order Models

We consider the model

(6) Z ADT ) + L)
i=1
which is a special case of (1) in which
(4, A, ... A, A] , (1]
I 0 ... 00 0
A=10 I ... 0 0 and H= 1|0
0 O o 10 10 ]

The fact that the disturbances in the corresponding discrete model have a non-
singular dlstrlbutlon is immediate. For, if v is orthogonal to the columns of
A™H(m = 0,1,...,n — 1), then every element of v must be zero. Although, in the
model (6), all equanons have the same order, we can easily verify that the result
remains valid for mixed order models.

There is one serious ptactical limitation, however, to the use of the dlscrete model
corresponding to the reduced first order system of a higher order model. This is
simply that some of the variables of the discrete model are derivatives, and we do
not usually have observations of derivatives in econometrics. Therefore, if we wish
to use the discrete model for estimation, derivatives must be approximated, say by
first differences. An alternative is to use the higher order difference equation
system that is satisfied by equispaced observations of the basic variables (see [1]);
but this system is known to involve moving average disturbances, and although
consistent estimation is possible when the sample size is large enough it will be
expensive computationally.

3. LINEAR MODELS WITH EXOGENOUS VARIABLES

A simple extension of the closed model used in the previous section follows from
the introduction of exogenous variables. But parameter estimation of the new
system from its exact discrete model is no longer straightforward. To fix ideas, we
consider the model

) Dy(t) = -Ay(t) + Bz(t) + {()

where the matrix A and the process {(f) are as in (1),'? the matrix B whose elements
belong to the real number field is n x m, and z(t) is a vector of exogenous variables,
observable at discrete points in time, which we assume to be non-random and
to have continuous derivatives up to the third order. Some conditions on the

12 1t is implicitly assumed that no identities occur in (7). If identities do occur, then the results of the
last section are relevant, and the procedure we are about to consider remains viable so long as the dis-
turbances in the discrete time model have a non-singular distribution.
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exogenous variables are essential if two later assumptions'3 we will make in order to
develop an asymptotic theory are to be satisfied. The assumption that the elements
of z(t) have continuous derivatives to the third order is quite strong, especially in
view of the fact that the mean square derivative of y(t) does not exist. But this.
assumption,is not necessary and is made here only to help us develop an approxi-
mate model for estimation purposes and obtain some intuitive idea of the speci-
fication error involved in this model. Various weaker assumptions that would be
sufficient for our purposes are outlined in the appendix.

If the initial values are in the infinite past, we can write the solution of (7) as a
system of convolution integrals, which corresponds to a model first suggested by
Koopmans [6]. More recently, the model has been the subject of a long paper by
Sargan [11], who examined the asymptotic bias of various estimators obtained
from the discrete approximation to (7) and, more particularly, the order of this
bias as the interval between successive observations approaches zero. The alter-
native procedure is based on the discrete time model corresponding to (7). But, in
most cases and unlike the discrete form of a closed model, this model must be
approximated before the parameters can be estimated. The effect of this approxi-
mation is to make the estimators asymptotically biased. The question of how this
bias compares with the bias involved in estimating the discrete approximation to
(7) will be considered later.

From the solution of (7) we derive the system

h
8 y(B) = exp (hA)y(t — h) + f exp (s4)Bz(t — s)ds + &(t)

0
where &(t) = j'(') exp (sA){(t — s)ds and, as in (2), h is some positive real number
which represents the time interval between successive observations of the variables
y and z. By defining y, = y(rh) and £, = &(rh) for integral r, we may write (8) as

h
9) y, = exp (hA)y,_, + f exp (sA)Bz(th — s)ds + ¢&,.
: 0

To estimate the parameters of A and B from this model when only discrete observ-
ations of the variables are available we must, in general, approximate the integral
involving the exogenous variables. The special case occurs when z(¢) is a simple
integrable function of time such as a polynomial, trigonometric, or exponential
function; we can then integrate out in (9) to obtain a model that can be estimated
directly. We now proceed to consider the general case in which an approximation
is necessary.

3.1. An Approximate Model

Expanding z(th — s) in a Taylor séries about the value s = 0 and using the nota-
tion z, = z(rh) for integral r, we obtain

2(th — s) = z, — sztV + §222/21 — §3209)(7)/3!

'3 Assumptions 1 and 2 in Section 3.2.
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where th — s < 1 < th. One way of approximating z in the interval (th — h, th)
would be to truncate this expansion at the third term and use the approximations
zZV ~(z, — z,_)/h and z* ~ (z, — 2z,_, + z,_,)/h*. But, this approximation is
fairly crude and a better approximation is obtained if we replace z(th — s) by a
quadratic in s and express the coefficients of this quadratic in terms of the three
consecutive observations z,_,, z,_,, and z,.'* This method is equivalent to using
a form of numerical differentiation more refined than that just mentioned. We
approximate z(th — s) by a three-point Lagrange interpolation formula and then
differentiate once to obtain z" ~ (z,_, — 4z,_, + 3z,)/2h and twice to obtain
Z? ~ (z, — 2z,_, + z,_,)/h* Thus, we can write the approximation as

(10) 2th — s) =z, — s(z,_, — 4z,_; + 32)/2h + s*(z, — 2z,_, + z,_,)/2h>.
The error involved in using this approximation is well known and we have
(11) Y(th — s) = z(th — s) — 2(th — s)

= —s(—s + h)(—s + 2h)z®(9)/3!

where 6, which is an unknown function of s, lies in the interval (th — 2h, th).
As an approximation to (9) we may now construct the model
h

(12) y, = exp (hA)y,_, + f exp (s4)B2(th — s)ds + n,

0

where, for estimation purposes, it may be assumed that #, is a vector of serially
independent random variables with zero means and non-singular covariance
matrix. From (10) and (12) we obtain

(13) Ve = Elyt—l + E,z, + E3Zt—1 + E4zt—2 + 1,

where the coefficient matrices are
E, = exp (hA),
E, = h[{4(hA)"% + (hA)" 3} exp (hA) — (hA)~ ' — 3(hA)~%/2 — (hA)"*]B,
E; = h[{(hA)~" — 2(hA)™3} exp (hA) + 2(hA)~% + 2(hA)~3]B, and
E, = h[{ —3hA)"? + (hA)"3} exp (hA) — {hA)~2 — (hA)"*]B.

Clearly, (13) can be used to estimate the parameters of 4 and B from the discrete
sample data {y,,z,;t =1,2,..., T}. On the other hand, the estimators obtained
in this way will not be consistent because the model is not exact. But we can expect
the misspecification bias to be small if 2(th — s) is a good approximation to
z(th — s) in the interval (0, h); and the smaller the time interval h the better the
approximation is likely to be. More precisely, for s in the interval (0, k) it follows
from (11) that y(th — s) is of O(h®) as h tends to zero.'®> Moreover, the condition

!4 Professor J. D. Sargan suggested this approximation.
!5 The order of magnitude symbol O is used in the usual sense.
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under which the two models (9) and (13) are equivalent is contained in the relation-
ship

h
(14) n=¢& + f exp (sA)By(th — s) ds
0

which reduces to
n, =& + O(h*

as long as the elements of exp (sA4) and B remain bounded as h tends to zero. This
requirement will be discussed later. For the moment, it is sufficient to remark that
the bias involved in using the approximate model (13) for estimation purposes and,
thus, treating #, as a random disturbance with zero mean seems to be of O(h*).
We might add that (13) has the advantage of being exact when the elements of z(¢)
are polynomials in ¢ of degree at most two. This follows from the fundamental
property of the Lagrange interpolation formula. '
We now turn to investigate the effect of the specification error that results from
using the approximate model (13) on typical estimators obtained from this model.
The argument that follows in Sections 3.2 and 3.3 is somewhat abbreviated to
keep the paper to a reasonable length. For more detail the reader is referred to [10].

3.2. The Asymptotic Bias of the QML Estimators

Before proceeding we must be specific about the parameters to be estimated.
In general, the elements of 4 and B in (7) are simple functions of a smaller set of
parameters which we can represent by the p-vector o. If we wish to emphasize this
dependence we may write A(5), B(d), and, similarly, E()(i = 1, ..., 4) so that (13)
can be rewritten

(15) Yo = G(O)x, + n,

where G = [E,E, E;E,Jand X, = (V,_ 1,21, 21— 15 21— 5)-
The QML estimator of J is obtained by numerically minimizing

(16)  logdet(Y'Y — GX'Y — Y'XG + GX'XG)

where Y' = [y, y,,...,yr] and X' = [x,, Xx,,..., X;]. Some elements of § may
be just non-zero elements of A and B, others may be more involved functions of
these elements. Nevertheless, it is often convenient to minimize (16) with respect
to the non-zero elements'® of 4 and B first and then solve to find the corresponding
value of o (given that the transformation is one to one, as it frequently will be).
This being the case, we may as well write G(4, B) where it is understood that the
functional dependence is on the non-zero elements of 4 and B. Similarly, by the
estimators A4 and B we mean the matrices with the estimators of the non-zero
.elements of 4 and B in their appropriate positions and zeros elsewhere. This
convention will be retained in the rest of the paper.

16 Strictly, we mean those elements of A and B which are unknown a priori; for some elements of
A and B may be known to have constant values other than zero.
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We return to a remark made earlier about the requirement that exp (s4) and B
remain bounded as h tends to zero. In general, the elements of 4 and B depend not
only on the units in which the variables are measured but also on the unit of time.
Since a typical element of A or B involves the product of a response parameter,
which is proportional to the unit of time, and a simple function of other parameters,
some of which may be invariant with respect to the unit of time, we may anticipate
that many elements of 4 and B become smaller or at least remain constant as the
time unit decreases. This is not to say that, for any given time unit, the speed of
response parameters must be small. In fact, if the model is at all disaggregated we
may very well expect some equations to have large response parameters, repre-
senting fast rates of reaction.

However, it is important to distinguish between the unit of time and the time
interval between observations, which we have denoted by h. This distinction is
often blurred by the convenient practice of using h as the unit of time when we
construct a model. If we do take h to be the unit of time, then, as we have suggested,
many elements of 4 and B will decrease with h. But the possibility of some elements
of A and B becoming progressively larger as h decreases is not completely ruled
out.!” Since we have assumed that 4 is stable, it is reasonable to conclude that
even in this case exp (sA4) is bounded as h decreases; but the conclusion does not
follow for B. Consequently, (14) does not lead to the simple specification error of
O(h*) for the model (13). Another important consequence of identifying h with the
time unit is that those elements of y and z which are proportional to the unit of
time (such as flows) tend to zero as the time unit decreases; this would prevent a
later assumption'® being satisfied. Finally, it is worth mentioning that the con-
vergence of h to zero is not rigorously defined if h itself is taken to be the unit of time.

We now assume, therefore, that the time unit remains fixed as h, the interval
between observations, decreases to zero. It follows that 4, B and exp (s4) where s
lies in the interval (0, h) are bounded as h tends to zero, so that the specification
error of the model (13) is of O(h*). This result compares favorably with the
specification error of the discrete approximation to (7) which is known (see [11])
to be of O(h?).

\We define Y_, =[yo,---»Vr-1b Z' =1[245-- 527}y Z_ 1 =1[2¢---s27_1)s
Z_ ,=[z_y,...,27_,],and

y_ o o o0
o 1,3 1,3 1,3

so that

Y .Y Y_,Z*
J/X/X‘I:[ -17-1 -1 :I

Z¥yY_, Z¥Z*

17 Notice that if all the variables of a linear model have the same time dimension, then the elements
of A and B will certainly decrease with h. However, most macro-economic models anyway involve
variables having time dimensions that are not all the same.

'8 Assumption 1, Section 3.2. N
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where Z* = (1/3)(Z + Z_, + Z_,). The following additional assumptions are
now made in order that we may find the asymptotic bias of the QML estimators
of A and B. They are also sufficient to ensure that these estimators have a limiting
non-singular distribution, which will be discussed later.

ASSUMPTION 1: The matrices
M, M, '1 Y'Y Y'X
M = ’ = plim T
M, M,] T7° XY XX
and M = lim,_, o M both exist. M ,, is assumed to be positive definite for h > 0 and
the limit matrix lim,_, o J'M,,J = J'M,,J is also assumed to be positive definite.

ASSUMPTION 2: (i) The elements of z(t) are bounded uniformly in t. (ii) The matrix
plimp_, , (1/T)E | x,¢;_,, where ¢, = [bexp(sA)BY(th — s)ds, exists for all
integral r and when r =0 it is of O(h*) as h tends to zero. The matrix limy_,, (1/T)
X ¢.¢,_, also exists for all integral r and when r = 0 it is of O(h3).

.From the last part of Assumption 2 we obtain, by Cauchy’s inequality,

].T
< {llmTz 211—1;12072 ¢Jl} .

—* =1

llm T Z ¢n¢jl r

T—voo

Hence limy_, (I/T)Z . ¢,¢._, is bounded uniformly in r and of O(h?) as h tends
to zero.

ASSUMPTION 3: The elements of the disturbance &, in the model (9) have finite
moments up to the fourth order.

ASSUMPTION 4: The matrix function G = G(A, B) does not have a singularity at
the true values A® and B°. This assumption requires, in particular, that the matrix of
derivatives of G with respect to the non-zero elements of A and B has full rank at the
point defined by (A°, B°).

The conditions on the model implied by Assumptions 1 and 2 are not obvious
and it is worthwhile to consider how they can be derived from more fundamental
hypotheses about the components of the model, particularly the exogenous
variables. However, we leave this discussion to the appendix of this paper and now
derive explicitly the asymptotic bias of the QML estimators of 4 and B.

We define G* = M,,M,,' and G° = G(A°, B®). Since

(G* — G‘O)M22 =M,, — G°M,,
and

1
Z—GM22+p11mTZ£x +p11mTZ¢, -

T— o T— o



814 P. C. B. PHILLIPS

it follows from Assumption 2 that
(17) (G* — GO)M,, = O(h*).
Postmultiplying (17) by J, we obtain
Y., Y., Y_,Z*
112 Yy VAR AL
(18)  (G*=GOpim_ |,y ge| = O,
Z_,Y_, Z’_ZZ*
and if we let S, = plim,_, (1/T)Y_,Z,S,, = §},,and S,, = lim_, , (1/T)Z'Z,
we can write (18) as
M, S, + O(h)
19) G — 69) S,1 S,, + O(h)
S,1 + O(h) S,, + O(h)

S,; + O(h) S,, + O(h)

= O(h*).

Since M,,, S,,, S,,, and S,, are of O(1) as h tends to zero, it follows from the
normal properties of order relations that (19) implies the system

4
|:E’f — E%: Y (EF — E?):l JMy,J = O(h*).
i=2

1

By Assumption 1, J'M,, J is positive definite and has a positive definite limit as
h tends to zero so that

4
200 E*—ES=0(kh* and Y (E¥ — E?) .= O(h*).
i=2

We let A and B denote the Alimits in probability of the QML estimators of A
and B and we define G = G(4,B), H=[I:—G], H=[I1:-G], H® = [I: -G"],
and H* = [I: — G*]. Then, from the definition of G*, we obtain the relationship

H°MH® = H*MH* + (G° — G*)M,,(G° — G*Y
which, in view of (20), we can write as
(21) H°MH® = H*MH* + O(h®).
We know also that
(22) AMA' = H*MH* + (G — G¥*)M,,(G — G*Y
and since 4 and B rﬁinimize (16) we have

(23) det (H°MH®) > det (AMA’).
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Using a lemma proved by Sargan [11] we can deduce from (21), (22), and (23) that
(G — GM (G — G¥) = O(°),

which implies the system
A s E -En]
(24 E, —E¥:) (E,— ENJUM,,J| & _ = O(h®)
) B -EY WMol & o
i=2

where G = [E,:E, E,'E,]. Since J'M,,J is positive definite and tends to a
positive definite limit as h tends to zero, it follows from (20) and (24) that

4
" (25) E, —E$=0(* and Y (E; — E?) = O(h*).

i=2

From the definition of the matrix G it can be seen that the elements of G are

differentiable up to the third order with respect to the non-zero elements of 4 and
B. Clearly, 0E/0a;; is of O(h) and, expanding exp (hA) in a power series, we find
from (13) that!®

E, = h[{I + 3hA)}C + 1B,
E; = h[{(hA)*> — 2I}C + 4(hA) + I'B,  and
E, = h[{I — 3(hA)}C — {11B,

where C = T2, (hA)"/(r + 3)! Thus, the derivatives of G with respect to the non-
zero elements of A and B tend to zero as quickly as h.

The elements of the matrix functions E (A4, B) and F(4, B) + ,E(A,B) =
A~ '{exp (hA) — I} B may now be expanded in Taylor series to the ﬁrst order about
the true values A% and B°. Using the fact that the first derivatives of E; and F
are of O(h) as h tends to zero, we find from (25) that

26) A-A°=o0(*) and B —B°=0(M).

We can expect, therefore, that the asymptotic bias of the QML estimators
diminishes rapidly as the interval between observations decreases. The order of
magnitude of this bias, O(h®), is better than that of similar estimators obtained
from the discrete approximation to (7).2° This suggests that the use of the approxi-
mate model (13) for estimation purposes may be worthwhile in spite of the compu-
tational difficulties. We should emphasize, however, that the final result (26) is
conditional on the assumptions we have made earlier. When these assumptions
(particularly Assumption 2(ii)) are not satisfied, the order of magnitude of the
asymptotic bias of our estimators may be larger than that given by (26). We take up
this problem in the Appendix. We show there, inter alia, that if the first derivatives

19 It may be of interest to point out here that the following expressions for E,, E;, and E, should be
used when we come to write a program to estimate (13). For the first derivatives of the expressions
for E,, E5, and E, given earlier are unnecessarily complicated and can lead to serious rounding errors
in computation.

20 Sargan [11] has shown that the QML estimators of the coefficient matrices A and B obtained from
the discrete approximation to (7) have an dsymptotic bias of O(h?).



816 P. C. B. PHILLIPS

of the elements of z(t) do not exist at a countable set of points on the real line, then
the order of magnitude of the asymptotic bias is no longer given by (26) but is of
O(h). Thus, when our assumptions are not satisfied, asymptotic theory does not
lead us to prefer the approximate model (13) rather than models derived from
simpler approximations such as the discrete approximation to (7). We now turn
to discuss the limiting distribution of the estimators.

3.3. The Limiting Distribution of the QML Estimators

Since the exogenous variables are non-random we know that the disturbance
7, in (13) has the same covariance matrix as &,. This matrix is Q = hZ + O(h?) and
thus the distribution of #, is degenerate in the limit as & tends to zero. If we assume
that the diagonal elements of X are non-zero, then Q™! is of O(1/h) as h tends to
zero.?!

Given the sample observations {y,, x,;¢ = 1,..., T}, we know that the QML
estimators of 4 and B satisfy the necessary conditions

(27 trace(V"1dV) =0

where V= (1/T)Z_, (y, — Gx,)(y, — Gx,). If we denote by ¢ the column vector
formed by taking the direct sum of the non-zero elements of successive rows of
the matrices 4 and B, the system (27) can be written

T
(28) H(c) = (1/T) 3, WV~ (y, — Gx) =0

t=1

where W, is the matrix whose (i, j)th element is w, i = Zpt 1" (0g;/0c)x,, and g is
the (J, k)th element of G. In passing we note that the matrix W, is of O(h) as h tends
to zero.??

The ith row of (28) has the following limited expansion?? in the neighborhood

of c°, the true value of ¢
Hc) = H{c®) + H}(c®(c — c°) + 3(c — c®YH}(c")(c — ¢)

where H}(c) = 0H{c)/dc, H%(c) = 0*H{(c)/dcdc’, and the vector c! lies between ¢
and c°. If & denotes the QML estimator of ¢, it follows that ¢ satisfies

29) H(c®) + Qpe—-c®=0
where the (i, j)th element of the matrix Qy is
(30) 0H(c%)/dc; + K& — c°)0*H(c")/ocdc;.

21 Of course, some elements of Q™! may be O(1) if £ has zero elements and this case is not excluded.
The assumption made ensures that there is at least one element in each row of Q! that is O(1/h) and
not O(1).

22 A little reflection shows that there is at least one element in each row of W, which tends to zero
no faster than O(h). .

23 It may be worth mentioning that in the system (28) the elements of W}, V, and G are all functions
of c.
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Under the assumptions we have made, (30) has a finite limit in probability. In
fact, we can readily show that Q; converges in probability to a matrix which is
dominated, as k tends to zero, by

T
31) —plim (1/T) Y WO'N~1w?

T—o0 t=1
where the affix 0 denotes evaluation at the true value ¢ and

o T
N =plimV° =Q + lim (1/T) 3. $4..

T-wo t=1
From an earlier remark it follows that N~ ! is of O(1/h), so that (31) is of O(h).

Assumption 4 suffices to ensure that (31) is non-singular. Hence, if we write

Q = plimy_,, @y, Q' is of O(1/h).
From (29) we obtain:

¢ —plimé = —Q7'H(c°) + 0! plim H(c®)
so that ﬁ (¢ — plim ¢) has the same asymptotic distribution as

() ~0 AT Y WONIE - Q-lﬁ[(l/n 3 WON4,

t=1

T

—plim (1/T) ), W?’N"qb,].
t=1

The first term of (32) has a limiting normal distribution?* with zero mean and

covariance matrix

T
(33) 0! {plim(l/T) y W?'N‘ls)N‘lW?} 0!
T=o =1
which is of O(1/h) as h tends to zero.

Since y, = X2, exp (shA),,_ + u,, where u, = X2  exp (shA)y,_, and g, =
{4 exp (sA)Bz(th — s)ds, the limiting distribution of the second term of (32) de-
pends on that of °

PIEDY
jk=1r=1s
for (i = 1,2,...,n). But the elements. of ¢, are bounded, so that (l/ﬁ VEL | D X
Cp—1-5 has an asymptotic normal distribution with mean zero and variance
[Q],,lim;_ , (1/T)E[_ | ¢2. We can deduce that the limiting distribution of the

M8

n T
; 19, n4exp (shA), (1/n/T) Y. dupee s

t=1

0

24 The ith element of the first term of (32) is a finite linear combination of elements such as
(l/ﬁ) =7y x,&u, and x,, includes lagged endogenous variables as well as exogenous variables for
various r. To show that such elements have a limiting normal distribution when x,, is a lagged endo-
genous variable, we must assume the existence of moments of &, of higher order than the second (hence
our Assumption 3). We can then appeal to the recent results of Schénfeld [12].

23 In the following expression, we denote the derivative dg /0c; by L.
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second term of (32) is normal with mean zero and covariance matrix of O(h?) as h
tends to zero.

We can similarly show that the asymptotic covariance between the first and
second terms of (32) is of O(h?). Hence, the dominant term as h tends to zero, of
the asymptotic covariance matrix of ﬁ (¢ — plim &) is the matrix (33). We have
now proved the following result: ‘

THEOREM 4: The limiting distribution of \/hT(¢ — plim &) as T tends to infinity
is normal for each fixed h. The mean of this limiting distribution is zero for all h and
the limit, as h tends to zero, of the covariance matrix of this limiting distribution is

T -1
lim h { plim [(I/T) Y W?'Q_IW?] }
h—-0 T— oo

t=1

= [(lim (1/h?) trace {(0G®'/oc)Z = "(0G°/dc )M 5, });,] ™!
h—0

= [SE' Q@ J'M,,J)S] ! ;

where ® denotes the right-hand Kronecker product and S is a selection matrix used
to delete those rows and columns of £~ ® J'M,,J which correspond to the zero
elements of A and B.

4. CONCLUDING REMARKS

From the results in Section 2, it seems unlikely that the presence of identities
in a continuous time system will cause any estimation problem. A spot test on
the structure of the model to see if the disturbances in the discrete model have a
non-singular distribution is given by the rank criterion of Theorem 3. If the test
is affirmative, then the usual procedure based on the discrete model is viable.

Exogenous variables are a more serious complication. In Section 3.1 we found
that the discrete time model can still be used for estimation purposes after we have
constructed an approximation to the component of the model involving the exo-
genous variables. The specification error implicit in this approximation is small,
and so too is the asymptotic bias of estimators derived from the approximate
model. The QML estimators considered in this paper have a limiting normal dis-
tribution, but with a biased mean and covariance matrix. This bias disappears as
the interval between successive observations goes to zero. The conclusion of
asymptotic theory leads us to favor the discrete time model rather than the dis-
crete approximation for estimation purposes, but only in certain cases. This
qualification depends on the results of the Appendix to this paper where it is shown
that the crucial Assumptions 1 and 2(ii) in Section 3.2 will be satisfied when the
exogenous variables are, essentially, either smooth non-random functions of time
or stationary stochastic processes that are differentiable in mean square. As yet
we have no guide to the small sampling performance of the procedure based on
the discrete time model when exogenous variables occur in the model.

The approach we have adopted in this paper to the estimation of continuous
time models rests on the hypothesis that simple finite-order finite-parameter models
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can satisfactorily represent many processes that we wish to explain in the real
economic world. Undoubtedly, our a priori knowledge about the underlying
mechanism is incomplete and on many occasions, for instance, we may be unsure
of the appropriate order of an equation in the model. But this is a symptom of the
general problem an investigator faces in empirical economic research when he
discovers that theory alone does not provide a statisfactory guide to the precise
formulation of an econometric model. However, this should not deter us from
developing parametric methods; and it seems to me that as long as we have reason
to believe that models in which time is treated as a continuous variable are impor-
tant in economics and as long as we continue to build such models in economic
theory then we should continue to develop and test techniques of estimating such
systems from observed data.

Several questions are left unanswered by this paper. One is the effect of having
in econometrics variables whose observations are integrals over time. For, when
we integrate the discrete time model the stochastic disturbance becomes a moving
average and is serially correlated. Another is the treatment of models in which the
assumption of a pure noise disturbance is relaxed. In this case, a more general
assumption is that the disturbances are generated by a simple parametric model,
such as a first order differential equation system driven by pure noise. By raising
the order of the basic system we then end up with the same situation as that dis-
cussed in Section 2.2. But these questions are the subject of another paper.

University of Essex
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APPENDIX?¢

The purpose of this Appendix is to indicate how Assumptions 1 and 2 in Section 3.2 of the paper
can be derived from more basic assumptions about the exogenous variables. In treating the discrete
approximate model, Sargan [11] has already done this and the argument here follows a similar line.
We consider first the case where the elements of z(t) are non-random functions of time.

ASSUMPTION A : (i) The elements of z(t) are non-random continuous functions of time that are bounded
uniformly in t. (ii) The first three derivatives of z(t) exist and are bounded uniformly in t. (iii) The matrix
limy_, o (1/N) Y 2(c)z(x — rY dv exists for all real r and when r = 0 it is positive definite. (iv)*" The matrix
limp_, , (1/T)ZL. | 2(th — s)z(th — r) exists for all real s and r. (v) The submatrix

fzz 2z, 7z,
lim-\z_,2 Z..Z_, Z-.Z_,

T—+o

. Z'0Z Z yZ_, Z-2Z_,

of the matrix M, given in Assumption 1 of the paper is positive definite for h > 0.

26 Some of the arguments in this Appendix are rather condensed and for more detail we refer the
reader again to [10]. -

27 We must make A(iv) an explicit assumption because, although the existence of lim_,, (1/T) x
=T_, z(th)z(thy is sufficient to ensure that the upper and lower limits of (1/T) Z[_, z(th — s)z(th — r)’

are finite, it is not sufficient to ensure that these are equal for h > 0.
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In view of A(ii) there exist finite positive quantities d, and d, for which 28||z(t)|| < dyand ||z(®)]| < d,
for all t. Then, for s > 0, ||z(t) — z(t — s)|| < d,s and if we let N = Th we have

(34) < dod,h + d2h23.

N T
}]\}fo z(t)z(1) dt — %le z(th)z(thy

It follows from A(iv) and-(34) that
1 I 1N
’!1_'12) _}1_1'1;?’;1 z(th)z(thy = 13151;10 ﬁfo 2(7)z(z) dr,
which is, by A(iii), positive definite.
We know that

1 T T
(35) — Z Yy = Z f f exp (sA)Bz(th — s)z(th — r)B exp (rA’) ds dr
- T, =

+ = Z f f exp (sA){(th — s){(th — r) exp (rA’)dsdr
T t=1v0 o
and since the second term on the right side of (35) converges in probability to

(36) * = J. exp (s4) Y. exp (sA’) ds
)
which is positive definite, it follows that

1 1
lim —Y"_ Y = 11m Y¥ Y*, +Q*
DT 1T NT
where Y*, = [y§,...,y¥_ 1] and y* = (& exp (sA4)Bz(th — s) ds. The matrix M, given in Assumption
1 of the paper is then

Y¥, Y*, Y, Z Y¥Z_, Y Z_,
. 1| zy*, zz zz., zz_, * 0
M,, = lim — +
- T| 7, zZ..Z Z.Z_, Z_\Z_, 0 0

z'_zy’:1 Z.,Z Z.,Z_, Z-.Z_,

which is positive definite in view of (36) and A(v). The fact that the matrix lim,_o J'M,,J = J'M,,J
exists and is positive definite then follows from A(iii). This establishes Assumption 1.

Under Assumptions A(i) and A(ii), ¢, is of O(h*) uniformly in t and Assumption 2 in the body of the
paper is clearly satisfied. However, A(i) and A(ii) are quite restrictive, and we may consider how the
order of ¢, is affected by relaxing these assumptions. If the elements of z(f) are not necessarily smooth
functions of time, then we may expect fairly simple approximations to perform as well in terms of
asymptotic bias as the interpolation formula developed in the paper, which uses current and two lagged
values. As an alternative to A(ii) suppose we make the following assumption.

AsSUMPTION A'(ii): The first derivatives of the elements of z(t) exist and are bounded except at a count-
able set of isolated points on the real line.

By subdividing the interval (th — 2h, th) into subintervals within which the first derivatives of each
element of z(t) exist, we find from the mean value theorem that y/(th — s) is of O(h). Then ¢, is at most
of O(h?) and the estimators considered in the paper have an asymptotic bias of O(h) as h tends to zero.
Since the simple approximation z(th — s) ~ z,, for s in the interval (0, k), is sufficient to yield this result,
it seems that in the case of exogenous variables satisfying A’(ii) rather than A(ii) the approximate model
(13) has no real advantage over simpler approximate models.

Assumption A(iii) might also be regarded as a rather restrictive assumption because it excludes
important cases such as exogenous variables which are simple polynomial functions of time. However,

28 We take the norm || D|| of a matrix D = (d;;) to be the sum X, ;|d; .
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we can take account of these cases by appropriate normalization. Instead of A(iii) we can substitute the
following assumption :

AssUMPTION A'(iii): The matrix

N
lim Dy! f 2(t)z(t — r) dt Dy !,
Now o

where Dy = diag (\/dY,...,/d%:) and dY = [§ z{t)* dt (i = 1,...,m), exists for all real r, and when
r = 0 it is positive definite.

The sums in Assumption 2(ii) of the paper would also have to be normalized. Although the exogenous
variables are not uniformly bounded when they are polynomial functions of time, the interpolation
formula (10) should give a good approximation to z(th — s) for s in the interval (0, ). The error y(th — s)
will be of O(h*) and Assumption 2(ii) of the paper will be satisfied when the sums are appropriately
normalized. o

We now consider the second case where z(t) is stochastic and we assume the following:

AsSUMPTION B: (i) z(t) is a strictly stationary ergodic process that is stochastically independent of the
process {(t). (ii) The autocovariance matrix R,,(t) = E{z(t)z(t — t)'} has continuous derivatives up to the
third order and R,,(0) is positive definite. (iii) There exist no non-zero vectors a, b, and c such that

a'z(t) + b'z(t — 1) + c'z(t — 27) =0, >0,
with probability 1.

Given that the initial conditions are in the infinite past we have

\

R,.(t) = E{y(t)z(t — 1)’} =/Jm exp (sA)BR._.(t — s)ds
)
and
(37) R,(7) = E{y(t)y(t — )}

= on on exp (sA)BR,,(t — s + r)B exp (sA’) dsdr
o 0
+ Jm exp(sA) Y. exp {(s — 1)4'} ds.

We denote the first matrix on the right side of (37) by R};*(z). It follows from B(i) that

R3X0)  R,(0) Ry(h) R,,(2h)
R,(0) R.(0) R.(h) R.(2h) . |:9* 0]
Ry(h)  R.(h) R.0) R.h 0 0
R;.(2h) R:.(2h) R;(h) R.(0)

(38) My, =

where Q* is given by (36). We can deduce that M ,, is positive definite from Bf(iii) and the fact that both
R_,(0) and Q* are positive definite. It is also clear from (38) that the limit matrix J'M,,J is positive
definite. This establishes Assumption 1 of the paper.

Since ¢, is a linear filter of the stationary ergodic process z(t), we know that

N ,
(39) gl_{‘;‘?';l XPi_p = E(xtd)r—r)
and

N
(40) ];l_{rg ?rgl &b, = E(9,9;-,)
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for all integral r. To find the order of magnitude of (39) when r = 0, we consider first the mean value
h

(41 E(z,$) = f E{zy(th — s)'} B’ exp (s4") ds.
0o

From (10) and (11) we obtain
(42) E{z(th — 5} = R, (s) — [R..(0) — s{R,,(2h) — 4R, (k) + 3R..(0)}/2h + s*{R_.(0)
— 2R_.(h) + R_,(2h)}/2h*].

By expanding each of R,,(s), R_,(h), and R,,(2h) in a Taylor series to the third order about the origin,
we find that the right side of (42) reduces to

{s3R3X0,) — sh(2h — 5)REND,) + 4sh(h — 5)R/(6;)}/3!

where?® 0 < 0, < 5,0 <80, < h,and 0 < 6, < 2h. Hence, for s in the interval (0, h), E{zy(th — s)'} is
of O(h3) as h tends to zero, and it follows from (41) that E(z,¢;) is of O(h*). We can slmllarly show that
the other elements of (39) are of O(h*) when r = 0.

We now turn to (40). If we put r = 0, we have
h ph
@) EG#) = | [ expls ABEWGh ~ spith — 5B exp(5,4) ds, dsa,
[R] N

and we can verify in a way similar to the above that (43) is at most of O(h) as h tends to zero. Thus, it
is clear that Assumption 2(ii) of the paper is satisfied. Since Assumption 2(i) is needed only to help
derive the limiting distribution of the QML estimators, Assumption B is sufficient to ensure that these
estimators have an asymptotic bias of O(h3).

However, Assumption B(ii) is quite restrictive. For, ifF (4) is the spectral distribution matrix of the
process z(z), the existence of the second derivative of R_,(7) at the origin implies that

trace {Jw A2 dF (A)} < 0.

Thus, the process z(t) is differentiable in mean square (see, for instance, [5]). It may appear unrealistic
to assume that the exogenous process has this property when from the formulation of the model it is
clear that the mean square derivative of the endogenous process y(t) does not exist. We therefore con-
sider the following weaker assumption as an alternative.

AsSSUMPTION B'(ii): The autocovariance matrix R,,(t) has right and left derivatives up to the third
order at © = 0 and continuous derivatives to the third order elsewhere. R_,(0) is positive definite. ’

Since we do not assume in B'(ii) that R, () is differentiable at © = 0, we do not exclude processes
that have no mean square derivative. Thus the elements of z(t) may, for example, be generated by a first
order stochastic differential equation system driven by pure noise.

This alternative assumption B'(ii) does not affect the derivation given earlier of Assumption 1 of the
paper. On the other hand, Assumption 2(ii) is now not generally true. For, under B'(ii) we can use only
one sided Taylor expansions of R,,(t) about the origin, and although it is still true that E(z,¢;) and
E(z,_ ,0)) are of O(h*), we now find that

(44) E{z,_y(th — sy} = %(h $){RE0+) — RE(O0-)] + O(h?)

where R{1)(0+) and R{!)(0—) denote the right and left derivatives of R,,(t) at the origin. It follows from
the first mean value theorem for integrals that

E(z,_,¢)) = “{R“’(0+ RG(O-)}B & + 6(h?)
where 0 < 6 < h. In the same way E(y,_ ;) is of 0(h?) and we deduce that the matrix plimy_, , (1/T) x
=, x,¢, in Assumption 2(ii) of the paper is generally of O(h?) as h tends to zero. On the other hand,

we can verify that E(¢,¢;) is of O(h®) so that the second part of Assumption 2(ii) is still true under B'(ii).

29 Each element of R3)(0,), for instance, is evaluated at some 6, satisfying 0 < 0, < s. The relation
R3)(#,) is not meant to imply that each element is evaluated at the same 6, .
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The effect of replacing B(ii) by the weaker assumption B'(ii), therefore, is to increase the asymptotic
bias of the estimators of the paper from O(h3) to O(h). This leads us to the conclusion based on asymptotic
theory that the approximate model (13) offers no real advantage over simpler approximations (such as
the discrete approximation) when the exogenous variables are stochastic processes which are not
differentiable in mean square.
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