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THE STRUCTURAL ESTIMATION OF A STOCHASTIC
DIFFERENTIAL EQUATION SYSTEM

By P. C. B. PaiLLIps!

It is now popular to construct economic models in differential equation form. Perhaps
the most serious econometric problem faced when dealing with a differential equation
system is the practical difficulty of finding consistent estimates of the important structural
parameters. In this paper a simple three-equation Phillips model is considered and con-
sistent estimates of the structural parameters are provided by the minimum-distance
procedure. The small-sample distributions of these estimates are investigated by the
Monte Carlo method ; and the results are then compared with those of the three-stage least-
squares estimates found by making a discrete approximation to the system of differential
equations.

1. INTRODUCTION

1.1. Introductory Remarks

MANY MACROECONOMIC MODELS are now constructed in a form in which time is
considered a continuous variable.? This form is intuitively appealing because the
actual movements of economic variables, as distinct from the observations on
them, are dependent on the continuous passage of time. If the variables of a model
are assumed to be continuous and differentiable functions of time, it seems natural
to represent the direction and strength of movements in the variables by derivatives.
The dynamics of a system involving several variables of this type can then be
described by a number of interdependent differential equations. Differential
equation models are currently used to explain various economic phenomena ; for
example, trade cycles in macroeconomic theory. They also have the advantage
of prescribing a continuous time path for each variable in the model. This latter
property is useful for purposes of prediction when we may be interested in estimat-
ing the value of a variable at any point in time.

The more precise specification of such a model for statistical purposes is known
as a system of stochastic differential equations; and a typical statistical problem is
that of estimating certain structural parameters by means of a series of observations
on the variables of the model. It is important that econometric techniques be
available to handle these models in the form suggested by economic theory. For,
we can hope to obtain consistent estimators of the structural parameters that
interest us only if the model as estimated is specified correctly. Some work has
already been done on the estimation of parameters in stochastic differential
equation systems.® The approach usually adopted is to make a discrete approxima-
tion to the differential equation system and apply well-tried procedures such as

! This paper was written from the research carried out for my M.A. thesis at Auckland University.
I wish to acknowledge my great debt to Professor A. R. Bergstrom who suggested the topic and helped
me as supervisor. I must also thank both referees for their penetrating comments and useful suggestions.

2 Arguments for the use of such models have been advanced by several writers. See, for example,

Koopmans [5] and Bergstrom [4].
3 See Phillips [8] and Bergstrom [3].
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1022 P. C. B. PHILLIPS

three-stage least squares (3SLS)* on the resulting model. The undesirable feature
of this method is the specification error, implicit in the approximation of the
basic structural form, which causes such estimators as 3SLS to be asymptotically
biased.

Moreover, the parameters of a stochastic differential equation system are un-
likely to be completely free of a priori restrictions. For instance, theory sometimes
suggests that certain variables be excluded from an equation and the corres-
ponding parameters are then restricted to be zero. Full use must be made of such
information if parameter estimates are to be efficient ; and by estimating the model
in a form consistent with its specification we have more opportunity for taking
into account a priori restrictions than if we are dealing with an approximate
model.

In this study a procedure is considered that provides consistent and asymp-
totically efficient estimators of the parameters in the structural form of a stochastic
differential equation system. For a simple three-equation Phillips > model the small-
sample properties of the estimators are investigated using the Monte Carlo
simulation technique. In particular, we are interested in whether the asymptotic
distributions of the estimators give a reasonably reliable guide to their small-
sample distributions. Finally, these estimators are compared with the 3SLS
estimators obtained from the discrete approximation to the specified differential
equation system.

1.2. The General First-Order Model

The general first-order stochastic differential equation system can be written
1) Dy(t) = A(G)¥(t) + b(0) + L(1),

where D is the differential operator d/dt, y(tjisan n x 1 vector of random functions
observable at discrete points in time (¢), 6 is a p x 1 parameter vector whose
elements are the key economic parameters of interest in the model, the matrix A
and the vector b have elements that are functions of 6, and {(¢) is a vector of dis-
turbances. In the general stochastic hypothesis of the model (1), certain properties
are attributed to the disturbance vector {(t). We shall assume the elements of-
{(¢) satisfy:

2 EUZf(t)Ci(t)dt] =0 (i=1,...,n),

3) E[ f " f(ts — DL dr j gt — ) dr] - a, f "1ty — Pglts — r)dr

(,j=1,...,n),

4 See Zellner and Theil [12].
5 The Phillips model (Phillips [7]) modified by a lag in the consumption equation.
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and
@ EU”ﬂa—wmwwf¥m—wmmm}=o (= 1b.. i)

where E represents the expected value, t;, < t, < t; < t,, f and g are weight func-
tions, o;; are parameters, and g;; > 0 for all i.

Suppose A4 has distinct characteristic roots f;, ,, ..., B, all with negative real
parts. Then there exists a nonsingular matrix P (the matrix with the characteristic
vectors of A as its columns) such that

®) P AP = diag (B,, B,,...,B,) = 4, say.

It can be shown® that equispaced observations generated by (1) satisfy the
autoregressive scheme:

(6) ¥e) = BO)y(t — 1) + A7 (9)[B(S) — 11b(6) + &(1)

where

BO) =, &= [ PP dr,
and -
™ Ewwm:ﬂPwrwmwwwm=asw

where X is the n x n matrix with g;; its elements.

1.3. A Simple Trade-Cycle Model
Consider the modified Phillips model

®) DC(r) = of(1 — 9)Y(2) + F — C(1)],
© DY(t) = A[C(t) + DK(r) — Y(#)],
(100 DK() = y[pY() — K()],

where Y(z) is real net national income at time ¢, C(t) is real consumption, K(t)
is the amount of fixed capital, F is the autonomous consumption component,
and a, s, 4, 7y, v are parameters of the model. In this study, F was regarded as a
predetermined variable whose constant value (F = 5) was known. This assumption
was made to simplify regression programmes. Of course, in practical econometric
work the value of F would need to be estimated along with the other parameters.

By substituting equation (10) into (9) and introducing disturbances into the
resulting equations we obtain the stochastic model

(11) Dy(t) = Ay(®) + b + {(©)

¢ C.f. Bergstrom [3].
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where >
C(r) —o ol —s) 0 oF
o= |Y@®)|, A= AMy—1) =iy, b=| 0|,
K(t) 0 -y 0

and we assume {(t) satisfies (2), (3), and (4). Let 6’ = [a, 4, , v, 5] be the vector of
parameters in this system.
It follows from (6) that equispaced observations generated by (11) also satisfy

(12) ¥t) = Byt — 1) + A~ Y(B — )b + &(b).

1.4. Generation of Data

To estimate the parameters of the structural form (11), a sequence of observations
{y(@®);t =1,..., T} must be made on the aggregate variables of the model. In
applied work, time series are usually available for this purpose. However, in this
study a simulation technique was used to generate observations through the system
(12). The observations then satisfy the structural form (11).

To generate the data we need to specify true parameter values

(13) 8% = [a° A°,7°, v°, s°] = [0.6, 4.0, 0.4, 2.0, 0.25]

and the autonomous consumption F = 5. Furthermore, we assume that the
integrals of {(t) are normally distributed with a covariance matrix equal to the
identity matrix. It follows that &(¢) is N(0, Q) where Q is given by (7) and

E[E(1)é(s)] =0

for t # s (because of (4)).
With the parameter values (13)

—-06 0.45 0 3
(14 A=| 40 —-08 -16|, b=]|0],
0 0.8 04 0

and the characteristic values of A are
B, = —1.56579, p, = —0.1171 + 0.37358i,
3= —0.1171 — 0.37358i.

We may now calculate B, A~ (B — I)b, and, using (7), Q.

But before (12) can be used to generate observations, a starting point y(0) in the
series must be specified. The equilibrium value, lim E[ y(¢)], was used for this pur-
pose. Artificial samples could now be generated by using variates sampled from
N(0, Q). However, in order to use N(0,I) variates, 2 was diagonalised by the
orthogonal matrix R:

R'QR = diag (a2, 63, 63)

(13)
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and the new system
z(t) = R'By(t — 1) + RA~Y(B — Db + &),
¥(t) = Rz(t), where &(t) = R&(1),

was constructed. Clearly, the standardised variates ¢,(t)/o; (i = 1, 2, 3) are N(0, 1).

The system (16) was used to generate 100 samples each of 25 observations on
y(t) and 7,500 random N(0, 1) variates (taken from Wold’s tables’) were needed
to do this.® Calculations were done on the University of Auckland’s IBM 1130
Version 2A computer and the machine was programmed to punch the sample
observations on cards.

(16)

2. PARAMETER ESTIMATION

2.1. The Minimum Distance Procedure

Let d(6) = A(5)” ![B(6) — I]b(9). Then, the reduced form obtained in the last
part is

(17) Wt) = N(9)z(r) + (1)

where N(6) = [B(6),d(5)] and z(t) = [y(t — 1), 1]. It is convenient to rewrite
(17) as

(18) y(t) = g(d) + &(t)

where g,(d) is a vector whose components are nonlinear functions of the param-
eters d, the lagged endogenous variables y(t — 1), and exogenous consumption F.
It is possible, therefore, to use a nonlinear procedure® to estimate the parameter
vector & directly from (18), given a series of observations {y(t);t = 1,..., T} on
the variables.

We denote by 64(S7) the vector which minimises the quadratic form

T
(19) TZ y(©) — g0 Sr¥(t) — g{9)]

where S, is some positive definite matrix. It is clear that the functions g;(d) are
differentiable with respect to d, at least to the third order, so that we may construct
the matrix of derivatives

0
0.0) = [( 5 5kg,,(5>) ]

Then 6,(S7) satisfies the necessary condition

1 T
(20) Hy(Sr,0) = T Y. 0.0)S7[¥(r) — g(9)] = 0.
t=1

7 See H. Wold [11].
8 The first sample generated is given in Table A-1 (Appendix).
9 Such a procedure is described in Malinvaud [6, Ch. 9, Sections and 5].
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This system involves five nonlinear simultaneous equations in the elements of 6.
We shall now examine an iterative procedure!® to obtain the solution vector of the

system.
The general model (18) with which we are working may be reconsidered as the

linear model
(21) x(f) = Q0 + &(1),

where x(t) = y(t) — g,(6°) + Q,6° and Q, = Q,(5°), because, for the true value of
the parameter vector 6°, (21) reduces to the basic model (18). The fact that (21)
is not a realistic model'! is unimportant, for it is used here only to help solve (20)
and later to develop an asymptotic theory for a practical estimator.

The vector 84(Sy) which minimises the quadratic form

T
T™1 Y [x(t) — Q06)'Se[x(t) — Q6]
t=1
satisfies
(22) H’I‘(ST7 50) - MT(STs 50)(5 - 50) =0

where

T
MT(ST’50) =T! Z Q;STQt'

t=1

It is equation (22) that suggests an iterative procedure leading to the solution of
(20). However, the elements of H; and M involve derivatives of g(J) which need
to be calculated for values of 6 at each iteration. Hence, we define

1 T

Hy(Sy, 0") = T Y Q™Y S[¥(t) — g{6™)]
t=1

and

1 T

= Y, Q6™ SrQ(6™).

T.5

Suppose 6 is our initial value (later, a method of finding a suitable 6® will be

discussed). Then the first approximation is obtained by solving

Hy(S7,0'”) — M(Sg, 6) (0" — 6'9) = 0.

M(St, ") =

10 A Newton procedure of successive approximations was not used as it involved the calculation
of second order partial derivatives which for this model proved too costly in terms of computer core
storage space. The advantage this method probably has over the one we are about to derive is a more
rapid convergence to the solution.

1 The model is not realistic simply because the vector x(t) and matrix Q, cannot be calculated from
the observations without knowledge of the true parameter vector 6°. Consequently, no estimator that
depends on sample values of x(t) and Q, can be obtained in practice. Malinvaud [6, p. 293], calls this
model a “linear pseudo-model.”
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Similarly, the nth approximation satisfies
(23) Hy(Sy, 0"~ V) — My(Sg, 6" V)(6™ — 6"~ 1) = 0.

If the procedure converges, it follows that the limit of the sequence {6} satisfies
H(Sr,6) = 0 and is the required solution of (20). Therefore, (23) provides a
practical iterative method for finding the estimator 64(Sy) in the general nonlinear
model (18).

If the covariance matrix Q of the disturbances were known, then an obvious
choice of estimator would be 6(2 1), the maximum likelihood estimator (MLE).!?
Because Q remains unknown in most practical econometric work, it seems reason-
able to select as S a matrix which will converge to Q™ ! in probability. Consequent-
ly, the objective of the following sequence of operations,'? used in this study to
estimate 6°, is to obtain an estimator that is asymptotically the MLE.

1. Calculate §4(S) for S = I, the identity matrix.

2. Calculate the residuals &(t) = y(t) — g,(6(S)) and the moment matrix

_ 1.
My = = X Q0E0.
t=1
3. Calculate 6* = §7(M1).
4. Calculate the residuals &(t)* = y(t) — g,(0*) and the moment matrix

1 T
Mg =+ Z S E)*.
t=1
5. Calculate the final estimator 6** = (M} ).
This final estimator will subsequently be referred to as the minimum-distance
estimator (MDE) and the procedure involved in its calculation as the minimum-
distance (MD) procedure.

2.2. Properties of the MDE

Before the asymptotic properties of 6** are investigated, it must be established
that the true parameter vector §° is identifiable in the reduced form structure
(By, d,), where B, = B(6°) and d, = d(6°). This problem can be broken up into
two parts. In the first place, it is clear that if A(6) = 4,, where 4, = A(6°), then
6 = 6°. On the other hand, it is by no means obvious that 4, can be identified
in the matrix B, . In fact, the result is not generally true.'* However, in this par-
ticular problem the a priori restrictions on 4 (we know that a,; = a;; = 0) are
sufficient to ensure that there is only one feasible root A4, of the equation
exp (4) = B,.'*

12 The disturbances &(t) are N(0, Q). This assumption was made when the data were generated.
13 This sequence of operations is suggested by Malinvaud [6, p. 297].

14 See, for instance, Telser [10, p. 495]. This reference was given to me by a referee.

!5 This result is proved in my thesis, Phillips [9].
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The consistency of 6** can now be established by making some modifications
to the proof of Malinvaud’s Theorem 6 [6, p. 301].'® From this result further
properties can be derived. In particular, the moment matrix M, tends in prob-
ability to Q and hence 6** is asymptotically equivalent to the MLE 6-(Q71).
Also, 6** is asymptotically equivalent to the MLE from the linear model (21),
that is

. 1 T L -1y T o
0= [T Z 2:Q Qtjl I:? Z Q:Q xt:l-

t=1 t=1

This estimator 8 is subsequently called the optimal estimator to avoid confusion
with 6,427 1!). From this latter equivalence the asymptotic normality of
ﬁ (6** — 8°) is secured. Moreover, if ¢ is the joint frequent function of
x(1),...,x(T), then it can be readily shown that

dlogg dlogp| L
E( 65 65' _E 1;1 QtQ Qt

and that ﬁ d has an asymptotic covariance matrix which is the limit in probability
of

1 T P -1

t=1

Hence, 6** can be regarded as an asymptotically efficient estimator in the sense
that its asymptotic covariance matrix is the inverse of the information matrix.

3. RESULTS OF THE MONTE CARLO STUDY

3.1. Small-Sample Estimates

The final estimator 6** has desirable asymptotic properties. But knowledge
of an estimator’s asymptotic behaviour is not necessarily a reliable guide to the
performance of the estimator in small samples. For this reason, a simulation
experiment was carried out to provide some picture of the small-sample distribu-
tion of the estimator and to determine whether this distribution could be satis-
factorily approximated by the known asymptotic distribution.

16 The proof differs from Malinvaud’s in two respects. First, the presence of lagged endogenous
variables means that the sequence of variables {z(t)} (see (17)) is stochastic and not uniformly bounded.
But the existence of high order moments of the disturbance &(t) overcomes this problem. Second, the
lower boundedness (by a positive number) of the Euclidean distance ||[N(6) — N(6°)|| in any closed
set not containing 6° must be proved and is not an assumption of the model. However, once the iden-
tification of ° is established, this result follows fairly easily.
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To obtain the final estimator 6** I used the sequence of operations given at the
end of Section 2.1. It was found that the distance ||6** — 6°|| was generally smaller
than ||6* — °||. Consequently, two more steps were included in this sequence than
in that prescribed by Malinvaud.!” The iterative scheme (23) was used to solve the
nonlinear system (20) and to find the vector 6,(S;) for S; =1, Sp = M gél, and
Sy = M} ! atsteps 1, 3, and 5 respectively.

For 69, the initial value, I selected the true value of the parameter vector §°.
Such a choice would naturally not be possible in practical work ; in this case, the
3SLS estimate (obtained by making a discrete approximation to the basic dif-
ferential equation system!®) could be used as a starting value. In fact, when the
apprcximate system had been estimated by 3SLS for the 100 samples, the first
twelve samples were rerun using

5 _ 3,

the 3SLS estimate of 6°, and the final estimate §** was the same as was first
obtained when

50 = 5°,

the true value. In other words, some variation of the starting value 5°’ (as would
be hoped) did not seem to affect the final MDE 6**. This result suggests that the
study was not prejudiced by the choice of 5.

Iteration through (23) was continued until |6® — 6"~ 1| < 0.001, for all i,
at the final step S in the sequence of operations, and §** was taken as the vector
6™.19 In this way, the estimates 6** were obtained for each of the 100 samples.

There is no reason why, in this simulation experiment, the practical estimator
5** should not be compared with the optimal estimator 5. The purpose of this
comparison is to measure the efficiency, in small samples, of the estimator §**
against that of 8, which is known to make use of information (specifically, the
covariance matrix Q of the disturbances) that is not taken into account by the
MDE §**. Although & is not a practical estimator, we are in a position to calculate
it because 6° and Q are known. Accordingly, the optimal estimates & were found
for each of the 100 samples. _

The arithmetic means and standard deviations of the two observed sampling
distributions (that of 6** and ) were calculated ; and using the two matrices

1 1

7[MT(M2‘{1)]_1 = 7[MT(M2‘{1, NI,
(24 . :

?[:MT(Q_I)]_I = T[MT(Q_1550)]_1a

17 Malinvaud [6, p. 297].
18 See Bergstrom [3]. This method is discussed in Section 4.
19 The length of the vector H(M} ", 6) at this point was generally of the order 0.01.
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together with the corresponding estimates, confidence intervals®® of the form

1
5%+ 2 j(f[MT(Mzz-I)J-I)ﬁ,

542 \/(%[MT(Q—I)]‘I)H,

fori = 1,...5, were constructed (and the number of intervals that did not contain
the true parameter 62 were recorded). The results have been tabulated and appear
in Table 1.

(25)

TABLE 1
Parameter o A y v s
True Value 0.6 4.0 0.4 20 0.25
Minimum Distance
Mean of the estimates 0.5734 4.0709 0.4016 2.0021 0.2537
Standard deviation of the 0.1410 0.7077 0.0153 0.0149 0.0259
estimates
Number of wrong intervals® 7 7 7 9 7
Optimal Estimator
Mean of the estimates 0.5756 3.9918 0.4012 2.0014 0.2510
Standard deviation of the 0.1386 0.5968 0.0144 0.0140 0.0259
estimates
Number of wrong intervals 5 5 5 4 3

“Intervals not containing the true parameter value.

For each parameter the optimal estimates have a mean over the 100 samples
which is only marginally better (i.e., closer to the true parameter value) than that
of the MD estimates. If we accept the standard deviation as a measure of the
observed sampling dispersion®! in the 100 samples, then the optimal estimates
are slightly more concentrated than the MD estimates, although for the last three
parameters the standard deviations differ only after the third or fourth decimal
place.

The confidence intervals (see (25)) constructed about the estimates for each
parameter and sample are only approximate since the exact sampling distributions
of the estimators are unknown and the standard deviations had to be estimated.

207f the elements of Q, were not stochastic, § would be a linear estimate with the distribution
N(6°, (1/T)[M (2 ")]~'). However, the matrix Q, involves lagged endogenous variables y(t — 1), and
the exact sampling distribution of 0 is unknown. This also applies to 6**. The moment matrices (24)

are not the exact covariance matrices of the estimators but are acceptable practical measures because
of the analogy with the linear model above and the fact that the asymptotic covariance matrix of both
ﬁé** and ﬁS is plim [M (M} ")]™" = plim [M(Q~ "))~ .

21 We should note carefully that there is no guarantee, a priori, that the sampling distributions of the
estimators possess finite moments of any order. This point was considered by Basmann [2]. However,
this is no reason why the standard deviation cannot be used as a measure of dispersion in the em-
pirical distributions with which we are dealing here.
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Consequently, the intervals were based on a rough 2 standard deviations which
suggests a 95 per cent level of confidence ; and over the 100 samples only 5 intervals
not containing the true value would be expected for each parameter. The results
observed in the case of the optimal estimator seem compatible with this. On the
other hand, the number of wrong intervals constructed about the MD estimates
was not seriously greater than for the optimal estimates.

In conclusion, the MD procedure provides reascnably precise estimates of all
parameters. Moreover, these estimates do not appear to be subject to much
more variation in the samples of size 25 considered here than the optimal estimates.
By this standard, therefore, the MDE retains a fair degree of efficiency even for
small samples.

3.2. The Asymptotic and Small-Sample Distributions

The asymptotic distribution of ﬁ (6** — 6% is N(O,[M(2~ )]~ ') where
M(Q™') = plim T~* =L 0:271Q,. But before we can compare the asymptotic
and small-sample distributions of ﬁ 0**, we must calculate the asymptotic
covariance matrix [M(Q~ )]~ L.

If M,, is the sample moment matrix of the variables {z(t);t =1,..., T}, then
M, tends in probability to the matrix22

21
vy, 1
where V, = lim,_, E[y(t)y(t)] and v, = lim,,  E[y(t)]. We know that
v, =[I — B]"'d and V, satisfies V, = BV,B' + X where X = Bv,d' + dv,B'
+ dd’ + Q, so that the limit matrix M, can be easily found.

We may write Q, = [(nz(¢)),,] where nd is the derivative of the hth row of
N(0) with respect to J, evaluated at § = §°. Then the (i, j)th element of the matrix
M(Q™ Y is
1
T,

M~

3
plim Y. [ 0@ Ywlngiz(t)] = plim [trace {N'Q™'NIM.,,}]
hk=1

1
= trace {NY' Q™ 'NIM,}

where N?* = [n9;, n3;, n3,]. Using this result, we find that

0.227195  0.056412 —0.011191 0.002541 0.006694
0.056412  6.084874 —0.089639  0.026894 —0.021981
[M@™H]"' =] —0.011191 —0.089639  0.003517 —0.001116  0.000129 |.
0.002541  0.026894 —0.001116  0.004882  0.004246
0.006694 —0.021981  0.000129  0.004246  0.013601

22 A well known result for autoregressive systems. The weak conditions assumed by Anderson [1]
are certainly satisfied by the model under consideration. This reference was given to me by a referee.



1032 P. C. B. PHILLIPS

If we denote the diagonal elements of this matrix by o2, 63, 62, 67, and o7, then
JT** — a0, /T — 2%/0;, /Te** = 1%/a,, /Tw** —°)/s,, and
ﬁ (s** — 5%/, all have an asymptotic N(0, 1) distribution.

On the other hand, using the parameter estimates obtained over the 100 samples,
the true parameter value, and the known asymptotic variance, we can construct,
by setting T = 25, an empirical sampling distribution for each of the above
statistics. From these observed distributions, frequency polygons can be sketched
and smoothed into continuous curves. This has been done for each parameter and
the resulting curves?® are drawn against the asymptotic N(0, 1) distribution to
facilitate the comparison of observed sampling behaviour and known asymptotic
properties.

The reader can draw his own conclusion from these figures. My own view is
that the asymptotic distribution gives, under the limitations of the study,?* a fair
guide to the behaviour of the estimator in samples of the order 25; and, more
specifically, there appears to be no great disparity between the sampling and
asymptotic dispersions, especially in the case of the parameters y, v, and s for which
the asymptotic property of efficiency seems to carry over reasonably well.

4., ESTIMATION OF THE DISCRETE APPROXIMATION TO THE STRUCTURAL SYSTEM

4.1. The Approximate Model**

The trade-cycle model we have been considering (see (8), (9), and (10)) comprises
three differential equations. We may integrate each of these equations from ¢ — 1
to ¢t and using the approximation ['_ X(¢)dt ~ 0.5{X(t) + X(¢t — 1)} for the
three variables C(t), Y(t), and K(¢), the following system is obtained :

) - Ct — 1) = aI:(l _ Yo+ ;”(f - Co+ 2C(t -1 F],

Ct+Cit -1

YO)— Yt -1 = ,1[ 2 ) + {K(t) — K(t — 1)}

Yt)+ Yt — 1)
-

Yt)+ Yt —1) K@)+ Kt —-1)
v 3 — > .

K@ -Kit—1)= y|:

23 See Figures 1, 2, 3, 4, and 5 in the Appendix.

24 1t must be remembered that only 100 samples have been used. Before generalising about sampling
behaviour on this basis alone, we must be very careful. Undoubtedly 1,000 artificial samples would
provide a more complete picture of the sampling distributions. But, even so, the results would still be
empirical and the Monte Carlo method is, it must be stressed, only a poor substitute for the analytical
determination of the exact sampling distributions.

25 Discrete approximations of the type used in this section are discussed in Bergstrom [3].
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We now define the new variables u, = C(t) — C(t — 1), v, = Y(t) — Y(¢t — 1),
w, = K(t) — K(t — 1), x, = [C(t) + C(t — 1)]/2,y, = [Y(¢) + Y(¢t — 1)]/2,and z, =
[K(¢) + K(t — 1)]/2. Then the system above can be written as three structural
equations:

u, = oF —ax, + a(l — s)y,,
v, = Ap,,

W, = YUy, — VZy,

and four identities: p, = x, + w, — y,, u, = 2x, — C(t — 1), v, = 2y, — Y(t — 1),
and w, = 2z, — K(¢t — 1). The jointly dependent variables are u,, v,, W,, X,, Vs> Z;> Dss
and the predetermined variables are C(t — 1), Y(¢t — 1), K(t — 1), and F. We may
now use as an approximation to (11) the stochastic model:

(26) u, = BoF + B1x, + Boy: + N1,
27) v = Bapi + N2

(28) - w = Bayi + Bszi + N,

where

(29) Bo = o, B, = —a, 2 =l —5), Bs = 4, Ba=yv,
BS = =7

and #,, (i = 1,2, 3) are random disturbances which, we assume, have zero means,
finite variances, and satisfy E[#n,n;,_,] = 0 for r # 0 and for all i, j.

The equations (26), (27), and (28) form a simultaneous equation system whose
parameters can be estimated by a number of well-known procedures. By using
(29), estimates can then be obtained of the structural parameters o, 4, y, v, and s in
which we are interested. The problem inherent in this approach is the specification
error that results from using the approximate model to estimate the parameters,
when the observations on the variables were generated by a different system. The
most damaging effect of incorrect specification is that estimates of the structural
parameters will be inconsistent. Therefore, as the number of sample observations
grows larger we cannot necessarily expect the estimates obtained to move closer
to the true parameter values. It is the significance of this bias, especially in small
samples, that will be examined in this part. In particular, the question emerges
whether the consistent estimators developed in Section 2 give better?® small-
sample results than standard estimators, such as 3SLS from the approximate
model.

26 Many different standards of comparison for estimators in small samples can be used. But, in
general, by “‘better” we mean more concentrated about the true value of the parameter being estimated.
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4.2. Parameter Estimation by Three-Stage Least Squares

Let B be the vector of parameters in the system defined by (26), (27), and (28);
and suppose [ is the estimate of § obtained by the 3SLS method. The corresponding
estimates of the structural parameters are

(30) 3 =1—PB..Bs —Bs, —BulBs, B, + BB

Interval estimates of the parameters can also be constructed. We denote by
[(¥;;)] the moment matrix generally used to estimate the covariance matrix of . 27
It follows that we can estimate var [&] by l//22, var [j] by Y44, and var [§] by Yee.-

A

The remaining two parameter estimates 0 and § are simple functions of the
elements of f:

b= —ByBs = f(BsBs), say, and
§= (ﬁ1 + Ez)/ﬁ1 = g(ﬁnﬁz)a say.

We may then estimate var [5] by

o1 (6i84 Bmps) l/l55 " (6185 Ba.Bs "066 " aﬂ4 Babs aﬁS BaBs wSG’
and var [§] by
6g 2 ag 2 ( 6g )( )
2 22 2 23-
¢ (aﬂl Bl:ﬁz) l/j - (6[;2 BI,BZ) "033 * 5B1 Bi.b2 aﬁz Bib ‘/J

4.3. The Specification Error

The significance of the specification error mentioned in 4.1 can be brought out
by examining the asymptotic bias of the 3SLS estimator: that is, the difference
between the true parameter vector 6° and the probability limit of 0. The elements
of B are rational functions of sample moments which converge in probability to
known (or readily calculated) values.?® Using these values, we can find the prob-
ability limit of 8, and from this result and (30) we obtain

&7 [0.61626 7
) 3.429465
plim = plim| % | = | 0401659
5 1.995571

L5J) L 0242031

The four parameters «, 7, v, and s do not seem to have been unduly affected by
the error of specification implicit in the discrete approximation. On the other

%7 See, for instance, Zellner and Theil [12, p. 58]—the first member on the right side of (2.17). This
matrix is obtained in the calculation of .
28 See Section 3.2.
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hand, the response parameter A in the income equation has taken the brunt of the
error. The underestimation in value (the true value being 4.0) suggested by the
probability limit of 3.429465 is borne out in the sample estimates (to be discussed
in the next section) where the bias appears to be accentuated.?®

4.4. Practical Results

It is clear that the MDE, which is consistent and asymptotically efficient, will
be preferred, where large samples are available, to estimators such.as 3SLS which
are obtained from the discrete approximate model. In practical work, however,
the number of reliable observations on the variables of a model is often less than
30. In Section 3.2 it was demonstrated that, for the model under consideration, the
observed sampling distributions of the MD estimates seem to accord reasonably
well with what we have established about the estimator’s asymptotic behaviour.
Conceivably, it would still be possible for the 3SLS procedure to give better
small-sample results. Therefore, the next step is to compare the performance of the
MDE in small samples with that of the 3SLS estimator.

From the 100 artificial samples of 25 observations on the variables C(z), Y(¢),
and K(r) sample data could be obtained for the variables in the discrete model
(26), (27), and (28). The 3SLS estimates 0 were then calculated for each sample.
The corresponding MD estimates 6** that were used in Section 3 were already
available. The interval estimates & + 2/, ,, Ad Wanh + Wee, D 20,8 +20,
were constructed, for each sample, from the 3SLS estimates themselves and the
estimated variances given in 4.2. Finally, the number of intervals not containing
the true parameter was noted. The results are presented in Table 11.>°

TABLE II
Parameter o A y v s
True Value 0.6 4.0 0.4 2.0 0.25
Minimum Distance
Mean of the estimates 0.5734 4.0709 0.4016 2.0021 0.2537
Standard deviation of the 0.1410 0.7077 0.0153 0.0149 0.0259
estimates
Root mean square error 0.1435 0.7112 0.0154 0.0150 0.0262
Number of wrong intervals 7 7 7 9 7
Three-Stage Least Squares
Mean of the estimates 0.6652 2.7444 0.4182 1.9995 0.2767
Standard deviation of the 0.1800 0.8015 0.0241 0.0311 0.0937
estimates
Root mean square error 0.1914 1.4896 0.0302 0.0311 0.0974
Number of wrong intervals 10 62 3 3 17

29 It may be of interest to point out here that the probability limit of the two-stage least-squares
(2SLS) estimate of this parameter was even lower, 2.92664 (while the asymptotic bias of the 2SLS
estimates of the other parameters was of the same order as that of the 3SLS estimates given here).

30 Recall the study by Basmann [2]. But even if the MD and 3SLS estimators do not possess finite
first and second order moments, we may still compare the observed mean and root mean square error
of the estimates to give us some guide as to the relative precision of the two methods of estimation.
Cf. Footnote 21.
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The MD estimates, in all cases, are subject to much less variation from sample
to sample than 3SLS. What is more, they are concentrated about a mean which,
for all parameters except the capital-output ratio v, is closer to the true value than
the corresponding mean of the 3SLS estimates ; and, of course, d appears to have a
sampling dispersion which is far greater than that of v**. The most significant
difference between the two methods occurs in the estimation of 4 where the
3SLS estimates are serious biased. We have already mentioned the asymptotic
bias of the estimator 1, which stems from the incorrect specification implicit in the
approximate form of the model. It now seems, from the results above, that this
bias is accentuated when the sample size is small.

Bias not only affects the point estimates of the parameters; it also disrupts the
confidence level that should be associated with interval estimates. We would
normally expect the intervals constructed about both the MD and 3SLS estimates
to contain the true parameter value in approximately®! 95 samples out of 100.
This means that the number of wrong intervals recorded in the estimation of one
parameter by one of the methods should ideally be of the order 5. 3SLS gives
disappointing results on this criterion. Confidence intervals about the estimates
7 and 3 provide very little guide to the true value of the parameter. In the first
case, the bias of 1 seriously disrupted the interval estimate; and secondly, the
estimated standard error of § often led to an interval which was too wide to be of
much practical use in estimating s. This latter point held also for the 3SLS estimates
of the other parameters. Although the figures are not listed above, the estimated
standard errors were generally much smaller for the MD than the 3SLS estimates ;
this led to correspondingly more precise confidence intervals about the MD
estimates.

Finally, if we accept the root mean square error as a means of classifying the
two estimation procedures, the above figures suggest that, for the sample size
used in this study, the MD method provides better estimates of all the structural
parameters than 3SLS.

5. CONCLUSION

In this paper, the MD method has been used to obtain consistent estimates of the
structural parameters in a stochastic differential equation system. We have been
concerned particularly with the behaviour of the MDE in small samples. The
Monte Carlo technique was used to investigate the sampling distribution of the
estimator, and it was found that the asymptotic theory seemed to carry over
reasonably well to samples of size 25. The MD estimates were then compared
with the 3SLS estimates (for the same 100 samples of 25 observations) that were
obtained by making a discrete approximation to the differential equation system.
The results indicated that the MD method gives estimates which are superior
by most standard criteria. This is consistent with the order in which the methods
would be classified according to their asymptotic properties. For a practical

3! The exact sampling distributions of the estimators are unknown, and the intervals are only
approximate.
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estimation procedure, it is suggested that the 3SLS estimates of the structural
parameters be obtained and that these estimates be used as a starting point in the
sequence of operations required to find the final MDE.

It is important to remember that the results obtained and a fortiori the conclu-
sions drawn in Sections 3 and 4 refer to the simple three-equation model selected
for the Monte Carlo study. However, I am inclined to think that the results may
remain valid for more involved models. In the first place, the identification of
parameters in a linear differential equation system from the reduced form (the
corresponding system of difference equations) is assured under conditions (simple
a priori restrictions on the structural matrix) that will usually be satisfied.>? The
MDE is then almost certainly consistent, even for much larger models than the
one we have considered. Furthermore, the presence of additional complexities
(more equations, more variables) may well worsen the effect of the specification
error that is caused by taking a discrete approximation of the model in order to
find standard estimators such as 3SLS. These considerations would suggest that
the MDE will retain its preferable asymptotic properties when the model is more
complicated ; and if the experience of this study is any guide, it will perform satis-
factorily for finite samples as well.

I must point out that the MDE is obtained from a recursive model whereas the
3SLS estimator is obtained from a simultaneous equations model. However, no
attempt has been made to discuss the relative merits of the two types of models ;
and it would certainly be wrong to deduce from the apparent superiority of the
MDE over the 3SLS estimator (in the model considered) that the recursive form is
the better specification. On many occasions, of course, a simultaneous equations
model, which is viable in its own right, could be the appropriate specification.
But, in this study, I have concerned myself with the situation in which a differential
equation system is the given specification and have examined the consequences of
estimating the parameters of such a system from an approximate simultaneous
equations model.

All computing work was done on the Auckland University IBM 1130 Version
2A machine. The MD estimates were found for each sample, after an average of 8
iterations in about 25 minutes. The 3SLS estimates could be calculated much more
quickly, and the programme took approximately 20 seconds per sample to execute.
However, the time difference should not be considered significant in the evaluation
of the two methods. For, the final MD estimate could be obtained on a larger
machine in as little as 2 or 3 minutes.

University of Auckland

Manuscript received December, 1970 ; revision received April, 197 1.

32 See Section 2.2.
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APPENDIX
TABLE A-I

Observations y(t) Generated in Sample 1

t C(t) Y(t) K(t)
0 20.001465  20.001294  40.002760
1 20.724659  21.873653  40.319084
2 19.500591  20.517932  41.772445
3 17.740573 16.459774  40.902389
4 16.797718 12.794065  36.626464
5 16.304851 14501026  32.963211
6 13.996612  13.712356  32.426635
7 15.690959 11.987287  32.672866
8 13.092237 9.756517  28.897232
9 14220060  12.906684  27.340717
10 15.704090 16.940200  30.263877
11 17.718055 17.428257  30.470222
12 19.487106  23.287891  34.520500
13 21.442127  25.636001  37.044532
14 24951919  30.484500  45.467407
15 26.961414  32.732826  48.174156
16 27.625804  34.344078  56.707367
17 29.802745  33.231643  62.022628
18 30.370506  29.752571  65.508667
19 27.389129  21.525676  60.045471
20 24136940  18.777145  52.820404
21 21.597133 17.251140  47.556259
22 20.041355 14.616481 42.308754
23 18.967193 16.165267  35.948036
24 18.595157 19.830234  32.583084
25 20.269153  23.141529  37.360000

-4.0 J . . 1.0 2.0

(a) The N(0, 1) distribution which is the limiting distribution of \/7‘(az" — a%/o, where o2 is the asymptotic variance of
Ta**.
(b) The observed sampling distribution of \/T(a" — «°)/a, for the 100 samples of 25 observations.

FIGURE 1
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(a) The N(0, 1) distribution which is the limiting distribution of \/'7'(1" — 1%/o, where ¢} is the asymptotic variance of
TA**, B
(b) The observed sampling distribution of \/T(l*“ — 19/, for the 100 samples of 25 observations.

FIGURE 2
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(a) The N(0, 1) distribution which is the limiting distribution of \/T(y" - y")/a, where ¢ is the asymptotic variance of
Ty**. _
(b) The observed sampling distribution of \/T(y** — 7)/a, for the 100 samples of 25 observations.

FIGURE 3
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(a) The N(0, 1) distribution which is the limiting distribution of J?(v" — v°)/s, where o2 is the asymptotic variance of
To**. ~
(b) The observed sampling distribution of \/T(v“ — v9/0, for the 100 samples of 25 observations.

FIGURE 4

(a)

0.2+
(b)
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-4.0 -3.0 -2.0 ~1.0 [o] 1.0 2.0 3.0 4.0

(a) The N(0, 1) distribution which 1s the limiting distribution of \/7"(5" — s%/a, where ¢? is the asymptotic variance of
Ts**. _
(b) The observed sampling distribution of \/T(s" — 5%/a, for the 100 samples of 25 observations.

FIGURE 5
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